wzry-vits-api / utils /load_model.py
Artrajz's picture
update
b0f5083
raw
history blame
7.26 kB
import os
import json
import logging
import config
import numpy as np
import utils
from utils.data_utils import check_is_none, HParams
from vits import VITS
from voice import TTS
from config import DEVICE as device
from utils.lang_dict import lang_dict
from contants import ModelType
def recognition_model_type(hps: HParams) -> str:
# model_config = json.load(model_config_json)
symbols = getattr(hps, "symbols", None)
# symbols = model_config.get("symbols", None)
emotion_embedding = getattr(hps.data, "emotion_embedding", False)
if "use_spk_conditioned_encoder" in hps.model:
model_type = ModelType.BERT_VITS2
return model_type
if symbols != None:
if not emotion_embedding:
mode_type = ModelType.VITS
else:
mode_type = ModelType.W2V2_VITS
else:
mode_type = ModelType.HUBERT_VITS
return mode_type
def load_npy(emotion_reference_npy):
if isinstance(emotion_reference_npy, list):
# check if emotion_reference_npy is endwith .npy
for i in emotion_reference_npy:
model_extention = os.path.splitext(i)[1]
if model_extention != ".npy":
raise ValueError(f"Unsupported model type: {model_extention}")
# merge npy files
emotion_reference = np.empty((0, 1024))
for i in emotion_reference_npy:
tmp = np.load(i).reshape(-1, 1024)
emotion_reference = np.append(emotion_reference, tmp, axis=0)
elif os.path.isdir(emotion_reference_npy):
emotion_reference = np.empty((0, 1024))
for root, dirs, files in os.walk(emotion_reference_npy):
for file_name in files:
# check if emotion_reference_npy is endwith .npy
model_extention = os.path.splitext(file_name)[1]
if model_extention != ".npy":
continue
file_path = os.path.join(root, file_name)
# merge npy files
tmp = np.load(file_path).reshape(-1, 1024)
emotion_reference = np.append(emotion_reference, tmp, axis=0)
elif os.path.isfile(emotion_reference_npy):
# check if emotion_reference_npy is endwith .npy
model_extention = os.path.splitext(emotion_reference_npy)[1]
if model_extention != ".npy":
raise ValueError(f"Unsupported model type: {model_extention}")
emotion_reference = np.load(emotion_reference_npy)
logging.info(f"Loaded emotional dimention npy range:{len(emotion_reference)}")
return emotion_reference
def parse_models(model_list):
categorized_models = {
ModelType.VITS: [],
ModelType.HUBERT_VITS: [],
ModelType.W2V2_VITS: [],
ModelType.BERT_VITS2: []
}
for model_info in model_list:
config_path = model_info[1]
hps = utils.get_hparams_from_file(config_path)
model_info.append(hps)
model_type = recognition_model_type(hps)
# with open(config_path, 'r', encoding='utf-8') as model_config:
# model_type = recognition_model_type(model_config)
if model_type in categorized_models:
categorized_models[model_type].append(model_info)
return categorized_models
def merge_models(model_list, model_class, model_type, additional_arg=None):
id_mapping_objs = []
speakers = []
new_id = 0
for obj_id, (model_path, config_path, hps) in enumerate(model_list):
obj_args = {
"model": model_path,
"config": hps,
"model_type": model_type,
"device": device
}
if model_type == ModelType.BERT_VITS2:
from bert_vits2.utils import process_legacy_versions
legacy_versions = process_legacy_versions(hps)
key = f"{model_type.value}_v{legacy_versions}" if legacy_versions else model_type.value
else:
key = getattr(hps.data, "text_cleaners", ["none"])[0]
if additional_arg:
obj_args.update(additional_arg)
obj = model_class(**obj_args)
lang = lang_dict.get(key, ["unknown"])
for real_id, name in enumerate(obj.get_speakers()):
id_mapping_objs.append([real_id, obj, obj_id])
speakers.append({"id": new_id, "name": name, "lang": lang})
new_id += 1
return id_mapping_objs, speakers
def load_model(model_list) -> TTS:
categorized_models = parse_models(model_list)
# Handle VITS
vits_objs, vits_speakers = merge_models(categorized_models[ModelType.VITS], VITS, ModelType.VITS)
# Handle HUBERT-VITS
hubert_vits_objs, hubert_vits_speakers = [], []
if len(categorized_models[ModelType.HUBERT_VITS]) != 0:
if getattr(config, "HUBERT_SOFT_MODEL", None) is None or check_is_none(config.HUBERT_SOFT_MODEL):
raise ValueError(f"Please configure HUBERT_SOFT_MODEL path in config.py")
try:
from vits.hubert_model import hubert_soft
hubert = hubert_soft(config.HUBERT_SOFT_MODEL)
except Exception as e:
raise ValueError(f"Load HUBERT_SOFT_MODEL failed {e}")
hubert_vits_objs, hubert_vits_speakers = merge_models(categorized_models[ModelType.HUBERT_VITS], VITS, ModelType.HUBERT_VITS,
additional_arg={"additional_model": hubert})
# Handle W2V2-VITS
w2v2_vits_objs, w2v2_vits_speakers = [], []
w2v2_emotion_count = 0
if len(categorized_models[ModelType.W2V2_VITS]) != 0:
if getattr(config, "DIMENSIONAL_EMOTION_NPY", None) is None or check_is_none(
config.DIMENSIONAL_EMOTION_NPY):
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_NPY path in config.py")
try:
emotion_reference = load_npy(config.DIMENSIONAL_EMOTION_NPY)
except Exception as e:
emotion_reference = None
raise ValueError(f"Load DIMENSIONAL_EMOTION_NPY failed {e}")
w2v2_vits_objs, w2v2_vits_speakers = merge_models(categorized_models[ModelType.W2V2_VITS], VITS, ModelType.W2V2_VITS,
additional_arg={"additional_model": emotion_reference})
w2v2_emotion_count = len(emotion_reference) if emotion_reference is not None else 0
# Handle BERT-VITS2
bert_vits2_objs, bert_vits2_speakers = [], []
if len(categorized_models[ModelType.BERT_VITS2]) != 0:
from bert_vits2 import Bert_VITS2
bert_vits2_objs, bert_vits2_speakers = merge_models(categorized_models[ModelType.BERT_VITS2], Bert_VITS2, ModelType.BERT_VITS2)
voice_obj = {ModelType.VITS: vits_objs,
ModelType.HUBERT_VITS: hubert_vits_objs,
ModelType.W2V2_VITS: w2v2_vits_objs,
ModelType.BERT_VITS2: bert_vits2_objs}
voice_speakers = {ModelType.VITS.value: vits_speakers,
ModelType.HUBERT_VITS.value: hubert_vits_speakers,
ModelType.W2V2_VITS.value: w2v2_vits_speakers,
ModelType.BERT_VITS2.value: bert_vits2_speakers}
tts = TTS(voice_obj, voice_speakers, device=device, w2v2_emotion_count=w2v2_emotion_count)
return tts