wzry-vits-api / voice.py
Artrajz's picture
Upload 103 files
c5ed230
raw
history blame
21.1 kB
import os
import librosa
import commons
import sys
import re
import numpy as np
import torch
import xml.etree.ElementTree as ET
import config
import logging
from torch import no_grad, LongTensor, inference_mode, FloatTensor
from io import BytesIO
from graiax import silkcoder
from utils.nlp import cut, sentence_split
from scipy.io.wavfile import write
from mel_processing import spectrogram_torch
from text import text_to_sequence, _clean_text
from models import SynthesizerTrn
from utils import utils
# torch.set_num_threads(1) # 设置torch线程为1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class vits:
def __init__(self, model, config, model_=None, model_type=None):
self.model_type = model_type
self.hps_ms = utils.get_hparams_from_file(config)
self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0
self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0
self.speakers = self.hps_ms.speakers if 'speakers' in self.hps_ms.keys() else ['0']
self.use_f0 = self.hps_ms.data.use_f0 if 'use_f0' in self.hps_ms.data.keys() else False
self.emotion_embedding = self.hps_ms.data.emotion_embedding if 'emotion_embedding' in self.hps_ms.data.keys() else False
self.net_g_ms = SynthesizerTrn(
self.n_symbols,
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.n_speakers,
emotion_embedding=self.emotion_embedding,
**self.hps_ms.model)
_ = self.net_g_ms.eval()
# load model
self.load_model(model, model_)
def load_model(self, model, model_=None):
utils.load_checkpoint(model, self.net_g_ms)
self.net_g_ms.to(device)
if self.model_type == "hubert":
self.hubert = model_
elif self.model_type == "w2v2":
self.emotion_reference = model_
def get_cleaned_text(self, text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def get_label_value(self, label, default, warning_name='value', text=""):
value = re.search(rf'\[{label}=(.+?)\]', text)
if value:
try:
text = re.sub(rf'\[{label}=(.+?)\]', '', text, 1)
value = float(value.group(1))
except:
print(f'Invalid {warning_name}!')
sys.exit(1)
else:
value = default
if text == "":
return value
else:
return value, text
def get_label(self, text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
def get_cleaner(self):
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0]
def return_speakers(self, escape=False):
return self.speakers
def infer(self, params):
emotion = params.get("emotion", None)
with no_grad():
x_tst = params.get("stn_tst").unsqueeze(0)
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)])
audio = self.net_g_ms.infer(x_tst.to(device), x_tst_lengths.to(device), sid=params.get("sid").to(device),
noise_scale=params.get("noise_scale"),
noise_scale_w=params.get("noise_scale_w"),
length_scale=params.get("length_scale"),
emotion_embedding=emotion.to(device) if emotion != None else None)[0][
0, 0].data.float().cpu().numpy()
torch.cuda.empty_cache()
return audio
def get_infer_param(self, length, noise, noisew, text=None, speaker_id=None, audio_path=None,
emotion=None):
emo = None
if self.model_type != "hubert":
length_scale, text = self.get_label_value('LENGTH', length, 'length scale', text)
noise_scale, text = self.get_label_value('NOISE', noise, 'noise scale', text)
noise_scale_w, text = self.get_label_value('NOISEW', noisew, 'deviation of noise', text)
cleaned, text = self.get_label(text, 'CLEANED')
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
sid = LongTensor([speaker_id])
if self.model_type == "w2v2":
# if emotion_reference.endswith('.npy'):
# emotion = np.load(emotion_reference)
# emotion = FloatTensor(emotion).unsqueeze(0)
# else:
# audio16000, sampling_rate = librosa.load(
# emotion_reference, sr=16000, mono=True)
# emotion = self.w2v2(audio16000, sampling_rate)[
# 'hidden_states']
# emotion_reference = re.sub(
# r'\..*$', '', emotion_reference)
# np.save(emotion_reference, emotion.squeeze(0))
# emotion = FloatTensor(emotion)
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0)
elif self.model_type == "hubert":
if self.use_f0:
audio, sampling_rate = librosa.load(
audio_path, sr=self.hps_ms.data.sampling_rate, mono=True)
audio16000 = librosa.resample(
audio, orig_sr=sampling_rate, target_sr=16000)
else:
audio16000, sampling_rate = librosa.load(
audio_path, sr=16000, mono=True)
length_scale = self.get_label_value('LENGTH', length, 'length scale')
noise_scale = self.get_label_value('NOISE', noise, 'noise scale')
noise_scale_w = self.get_label_value('NOISEW', noisew, 'deviation of noise')
with inference_mode():
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy()
if self.use_f0:
f0_scale = self.get_label_value('F0', 1, 'f0 scale')
f0 = librosa.pyin(audio,
sr=sampling_rate,
fmin=librosa.note_to_hz('C0'),
fmax=librosa.note_to_hz('C7'),
frame_length=1780)[0]
target_length = len(units[:, 0])
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length,
np.arange(0, len(f0)), f0)) * f0_scale
units[:, 0] = f0 / 10
stn_tst = FloatTensor(units)
sid = LongTensor([speaker_id])
params = {"length_scale": length_scale, "noise_scale": noise_scale,
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst,
"sid": sid, "emotion": emo}
return params
def get_audio(self, voice, auto_break=False):
text = voice.get("text", None)
speaker_id = voice.get("id", 0)
length = voice.get("length", 1)
noise = voice.get("noise", 0.667)
noisew = voice.get("noisew", 0.8)
max = voice.get("max", 50)
lang = voice.get("lang", "auto")
speaker_lang = voice.get("speaker_lang", None)
audio_path = voice.get("audio_path", None)
emotion = voice.get("emotion", 0)
# 去除所有多余的空白字符
if text is not None: text = re.sub(r'\s+', ' ', text).strip()
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀
brk = np.zeros(int(0.75 * 22050), dtype=np.int16)
tasks = []
if self.model_type == "vits":
sentence_list = sentence_split(text, max, lang, speaker_lang)
for sentence in sentence_list:
tasks.append(
self.get_infer_param(text=sentence, speaker_id=speaker_id, length=length, noise=noise,
noisew=noisew))
audios = []
for task in tasks:
audios.append(self.infer(task))
if auto_break:
audios.append(brk)
audio = np.concatenate(audios, axis=0)
elif self.model_type == "hubert":
params = self.get_infer_param(speaker_id=speaker_id, length=length, noise=noise, noisew=noisew,
audio_path=audio_path)
audio = self.infer(params)
elif self.model_type == "w2v2":
sentence_list = sentence_split(text, max, lang, speaker_lang)
for sentence in sentence_list:
tasks.append(
self.get_infer_param(text=sentence, speaker_id=speaker_id, length=length, noise=noise,
noisew=noisew, emotion=emotion))
audios = []
for task in tasks:
audios.append(self.infer(task))
if auto_break:
audios.append(brk)
audio = np.concatenate(audios, axis=0)
return audio
def voice_conversion(self, voice):
audio_path = voice.get("audio_path")
original_id = voice.get("original_id")
target_id = voice.get("target_id")
audio = utils.load_audio_to_torch(
audio_path, self.hps_ms.data.sampling_rate)
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length,
self.hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = self.net_g_ms.voice_conversion(spec.to(device),
spec_lengths.to(device),
sid_src=sid_src.to(device),
sid_tgt=sid_tgt.to(device))[0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio
class TTS:
def __init__(self, voice_obj, voice_speakers):
self._voice_obj = voice_obj
self._voice_speakers = voice_speakers
self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers])
self._vits_speakers_count = len(self._voice_speakers["VITS"])
self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"])
self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"])
self.dem = None
if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None:
try:
import audonnx
root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL)
model_file = config.DIMENSIONAL_EMOTION_MODEL
self.dem = audonnx.load(root=root, model_file=model_file)
except Exception as e:
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")
# Initialization information
self.logger = logging.getLogger("vits-simple-api")
self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}")
self.logger.info(f'device:{device} device.type:{device.type}')
if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers")
if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers")
if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers")
self.logger.info(f"{self._speakers_count} speakers in total")
if self._speakers_count == 0:
self.logger.warning(f"No model was loaded")
@property
def voice_speakers(self):
return self._voice_speakers
@property
def speakers_count(self):
return self._speakers_count
@property
def vits_speakers_count(self):
return self._vits_speakers_count
@property
def hubert_speakers_count(self):
return self._hubert_speakers_count
@property
def w2v2_speakers_count(self):
return self._w2v2_speakers_count
def encode(self, sampling_rate, audio, format):
with BytesIO() as f:
write(f, sampling_rate, audio)
if format.upper() == 'OGG':
with BytesIO() as o:
utils.wav2ogg(f, o)
return BytesIO(o.getvalue())
elif format.upper() == 'SILK':
return BytesIO(silkcoder.encode(f))
elif format.upper() == 'MP3':
with BytesIO() as o:
utils.wav2mp3(f, o)
return BytesIO(o.getvalue())
elif format.upper() == 'WAV':
return BytesIO(f.getvalue())
def convert_time_string(self, time_string):
time_value = float(re.findall(r'\d+\.?\d*', time_string)[0])
time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower()
if time_unit.upper() == 'MS':
return time_value / 1000
elif time_unit.upper() == 'S':
return time_value
elif time_unit.upper() == 'MIN':
return time_value * 60
elif time_unit.upper() == 'H':
return time_value * 3600
elif time_unit.upper() == 'D':
return time_value * 24 * 3600 # 不会有人真写D吧?
else:
raise ValueError("Unsupported time unit: {}".format(time_unit))
def parse_ssml(self, ssml):
root = ET.fromstring(ssml)
format = root.attrib.get("format", "wav")
voice_tasks = []
brk_count = 0
strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
for element in root.iter():
if element.tag == "voice":
id = int(element.attrib.get("id", root.attrib.get("id", config.ID)))
lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG))
length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH)))
noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE)))
noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW)))
max = int(element.attrib.get("max", root.attrib.get("max", "0")))
# 不填写默认就是vits
model = element.attrib.get("model", root.attrib.get("model", "vits"))
# w2v2-vits/emotion-vits才有emotion
emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0)))
voice_element = ET.tostring(element, encoding='unicode')
pattern_voice = r'<voice.*?>(.*?)</voice>'
pattern_break = r'<break\s*?(.*?)\s*?/>'
matches_voice = re.findall(pattern_voice, voice_element)[0]
matches_break = re.split(pattern_break, matches_voice)
for match in matches_break:
strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match)
time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match)
# break标签 strength属性
if strength:
brk = strength_dict[strength.group(1)]
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 time属性
elif time:
brk = self.convert_time_string(time.group(1))
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 为空说明只写了break,默认停顿0.75s
elif match == "":
voice_tasks.append({"break": 0.75})
brk_count += 1
# voice标签中除了break剩下的就是文本
else:
voice_tasks.append({"id": id,
"text": match,
"lang": lang,
"length": length,
"noise": noise,
"noisew": noisew,
"max": max,
"model": model,
"emotion": emotion
})
# 分段末尾停顿0.75s
voice_tasks.append({"break": 0.75})
elif element.tag == "break":
# brk_count大于0说明voice标签中有break
if brk_count > 0:
brk_count -= 1
continue
brk = strength_dict.get(element.attrib.get("strength"),
self.convert_time_string(element.attrib.get("time", "750ms")))
voice_tasks.append({"break": brk})
for i in voice_tasks:
self.logger.debug(i)
return voice_tasks, format
def create_ssml_infer_task(self, ssml):
voice_tasks, format = self.parse_ssml(ssml)
audios = []
for voice in voice_tasks:
if voice.get("break"):
audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16))
else:
model = voice.get("model").upper()
if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS":
raise ValueError(f"Unsupported model: {voice.get('model')}")
voice_obj = self._voice_obj[model][voice.get("id")][1]
voice["id"] = self._voice_obj[model][voice.get("id")][0]
audios.append(voice_obj.get_audio(voice))
audio = np.concatenate(audios, axis=0)
return self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format), format
def vits_infer(self, voice):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
audio = voice_obj.get_audio(voice, auto_break=True)
return self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
def hubert_vits_infer(self, voice):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0]
audio = voice_obj.get_audio(voice)
return self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
def w2v2_vits_infer(self, voice):
format = voice.get("format", "wav")
voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1]
voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0]
audio = voice_obj.get_audio(voice, auto_break=True)
return self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
def vits_voice_conversion(self, voice):
original_id = voice.get("original_id")
target_id = voice.get("target_id")
format = voice.get("format")
original_id_obj = int(self._voice_obj["VITS"][original_id][2])
target_id_obj = int(self._voice_obj["VITS"][target_id][2])
if original_id_obj != target_id_obj:
raise ValueError(f"speakers are in diffrent VITS Model")
voice["original_id"] = int(self._voice_obj["VITS"][original_id][0])
voice["target_id"] = int(self._voice_obj["VITS"][target_id][0])
voice_obj = self._voice_obj["VITS"][original_id][1]
audio = voice_obj.voice_conversion(voice)
return self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
def get_dimensional_emotion_npy(self, audio):
if self.dem is None:
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py")
audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True)
emotion = self.dem(audio16000, sampling_rate)['hidden_states']
emotion_npy = BytesIO()
np.save(emotion_npy, emotion.squeeze(0))
emotion_npy.seek(0)
return emotion_npy