import numpy as np import torch from bert_vits2 import commons from bert_vits2 import utils as bert_vits2_utils from bert_vits2.models import SynthesizerTrn from bert_vits2.text import * from bert_vits2.text.cleaner import clean_text from bert_vits2.utils import process_legacy_versions from contants import ModelType from utils import classify_language, get_hparams_from_file, lang_dict from utils.sentence import sentence_split_and_markup, cut class Bert_VITS2: def __init__(self, model, config, device=torch.device("cpu"), **kwargs): self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) self.speakers = [item[0] for item in sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])] self.symbols = symbols # Compatible with legacy versions self.version = process_legacy_versions(self.hps_ms) if self.version in ["1.0", "1.0.0", "1.0.1"]: self.symbols = symbols_legacy self.hps_ms.model.n_layers_trans_flow = 3 elif self.version in ["1.1.0-transition"]: self.hps_ms.model.n_layers_trans_flow = 3 elif self.version in ["1.1", "1.1.0", "1.1.1"]: self.hps_ms.model.n_layers_trans_flow = 6 key = f"{ModelType.BERT_VITS2.value}_v{self.version}" if self.version else ModelType.BERT_VITS2.value self.lang = lang_dict.get(key, ["unknown"]) self.bert_handler = BertHandler(self.lang) self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self.net_g = SynthesizerTrn( len(self.symbols), self.hps_ms.data.filter_length // 2 + 1, self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, n_speakers=self.hps_ms.data.n_speakers, symbols=self.symbols, **self.hps_ms.model).to(device) _ = self.net_g.eval() self.device = device self.load_model(model) def load_model(self, model): bert_vits2_utils.load_checkpoint(model, self.net_g, None, skip_optimizer=True, version=self.version) def get_speakers(self): return self.speakers @property def sampling_rate(self): return self.hps_ms.data.sampling_rate def get_text(self, text, language_str, hps): norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, self._symbol_to_id) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert = self.bert_handler.get_bert(norm_text, word2ph, language_str) del word2ph assert bert.shape[-1] == len(phone), phone if language_str == "zh": bert = bert ja_bert = torch.zeros(768, len(phone)) elif language_str == "ja": ja_bert = bert bert = torch.zeros(1024, len(phone)) else: bert = torch.zeros(1024, len(phone)) ja_bert = torch.zeros(768, len(phone)) assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, phone, tone, language def infer(self, text, lang, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): bert, ja_bert, phones, tones, lang_ids = self.get_text(text, lang, self.hps_ms) with torch.no_grad(): x_tst = phones.to(self.device).unsqueeze(0) tones = tones.to(self.device).unsqueeze(0) lang_ids = lang_ids.to(self.device).unsqueeze(0) bert = bert.to(self.device).unsqueeze(0) ja_bert = ja_bert.to(self.device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device) speakers = torch.LongTensor([int(sid)]).to(self.device) audio = self.net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, sdp_ratio=sdp_ratio , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[ 0][0, 0].data.cpu().float().numpy() torch.cuda.empty_cache() return audio def get_audio(self, voice, auto_break=False): text = voice.get("text", None) lang = voice.get("lang", "auto") sdp_ratio = voice.get("sdp_ratio", 0.2) noise_scale = voice.get("noise", 0.5) noise_scale_w = voice.get("noisew", 0.6) length_scale = voice.get("length", 1) sid = voice.get("id", 0) max = voice.get("max", 50) # sentence_list = sentence_split_and_markup(text, max, "ZH", ["zh"]) if lang == "auto": lang = classify_language(text, target_languages=self.lang) sentence_list = cut(text, max) audios = [] for sentence in sentence_list: audio = self.infer(sentence, lang, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid) audios.append(audio) audio = np.concatenate(audios) return audio