Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, BlipForConditionalGeneration
|
3 |
|
4 |
-
|
5 |
-
import
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
blip_model_large.to(device)
|
13 |
-
|
14 |
-
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
|
15 |
-
inputs = processor(images=image, return_tensors="pt").to(device)
|
16 |
-
|
17 |
-
if use_float_16:
|
18 |
-
inputs = inputs.to(torch.float16)
|
19 |
-
|
20 |
-
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
21 |
-
|
22 |
-
if tokenizer is not None:
|
23 |
-
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
24 |
-
else:
|
25 |
-
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
26 |
-
|
27 |
-
return generated_caption
|
28 |
-
|
29 |
-
|
30 |
-
def generate_captions(image):
|
31 |
-
|
32 |
-
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
33 |
-
|
34 |
-
return caption_blip_large
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
examples = [["australia.jpg"], ["biden.png"], ["elon.jpg"], ["horns.jpg"], ["man.jpg"], ["nun.jpg"], ["painting.jpg"], ["pentagon.jpg"], ["pollock.jpg"], ["radcliffe.jpg"], ["split.jpg"], ["waves.jpg"], ["yeti.jpg"]]
|
39 |
outputs = [
|
40 |
-
gr.outputs.Textbox(label="Caption including detected generator (if applicable)"),
|
41 |
]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
interface = gr.Interface(fn=generate_captions,
|
47 |
-
inputs=gr.inputs.Image(type="pil"),
|
48 |
-
outputs=outputs,
|
49 |
-
examples=examples,
|
50 |
-
title=title,
|
51 |
-
description=description,
|
52 |
-
enable_queue=True)
|
53 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
|
7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
|
10 |
+
def caption_image(raw_image):
|
11 |
+
inputs = processor(raw_image, return_tensors="pt")
|
12 |
+
out = model.generate(**inputs)
|
13 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
outputs = [
|
16 |
+
gr.outputs.Textbox(label="Caption, including detected generator (if applicable)"),
|
17 |
]
|
18 |
|
19 |
+
demo = gr.Interface(fn=caption_image, inputs="image", outputs=outputs)
|
20 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|