Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
# Load and parse the CSV file from Hugging Face
|
6 |
+
def load_data():
|
7 |
+
dataset = load_dataset("your-username/your-dataset-name", split="train")
|
8 |
+
df = pd.DataFrame(dataset)
|
9 |
+
lemmas = {}
|
10 |
+
current_lemma = None
|
11 |
+
|
12 |
+
for _, row in df.iterrows():
|
13 |
+
if row['#ORTO'] == '---':
|
14 |
+
current_lemma = None
|
15 |
+
elif current_lemma is None:
|
16 |
+
current_lemma = row['#ORTO'].replace("ORTO:", "")
|
17 |
+
lemmas[current_lemma] = []
|
18 |
+
else:
|
19 |
+
lemma_data = {
|
20 |
+
'PPOS': row['#PPOS'].replace("PPOS:", "") if pd.notna(row['#PPOS']) else "",
|
21 |
+
'PHON1': row['#PHON1'].replace("PHON:", "") if pd.notna(row['#PHON1']) else "",
|
22 |
+
'PHON2': row['#PHON2'].replace("PHON:", "") if pd.notna(row['#PHON2']) else "",
|
23 |
+
'COMM': row['#COMM'] if pd.notna(row['#COMM']) else ""
|
24 |
+
}
|
25 |
+
lemmas[current_lemma].append(lemma_data)
|
26 |
+
|
27 |
+
return lemmas
|
28 |
+
|
29 |
+
lemmas = load_data()
|
30 |
+
|
31 |
+
def search_lemma(lemma):
|
32 |
+
results = lemmas.get(lemma, None)
|
33 |
+
if not results:
|
34 |
+
return f"No results found for {lemma}"
|
35 |
+
response = f"Results for {lemma}:\n\n"
|
36 |
+
response += "PPOS\tPHON1\tPHON2\tCOMM\n"
|
37 |
+
for result in results:
|
38 |
+
response += f"{result['PPOS']}\t{result['PHON1']}\t{result['PHON2']}\t{result['COMM']}\n"
|
39 |
+
return response
|
40 |
+
|
41 |
+
iface = gr.Interface(
|
42 |
+
fn=search_lemma,
|
43 |
+
inputs="text",
|
44 |
+
outputs="text",
|
45 |
+
title="Lemma Search",
|
46 |
+
description="Enter a lemma to search for its declensions and pronunciations."
|
47 |
+
)
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
iface.launch()
|