import gradio as gr | |
import pandas as pd | |
image_path = "data/protein_dendrogram.png" | |
protein_clusters = pd.read_excel('data/protein_clusters.xlsx') | |
max_length = 500 | |
protein_clusters['proteins'] = protein_clusters['proteins'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) | |
protein_clusters['protein groups'] = protein_clusters['protein groups'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) | |
protein_clusters['protein features'] = protein_clusters['protein features'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else '')) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Protein similarity from BERT point of view") | |
gr.Markdown("This app displays protein similarity captured in the model [unikei/bert-base-proteins](" | |
"https://huggingface.co/unikei/bert-base-proteins).") | |
gr.Image(image_path, | |
label="Right click to zoom in new tab.", | |
container=True | |
) | |
gr.Markdown("\n") | |
gr.Markdown("Click on the [link](https://huggingface.co/spaces/unikei/proteins-from-bert-point-of-view/blob/main/data/protein_clusters.xlsx) to download the spreadsheet.") | |
gr.DataFrame(protein_clusters, | |
interactive=False, | |
wrap=True, | |
column_widths=[5, 5, 30, 30, 30]) | |
# | |
demo.launch() | |