Spaces:
Sleeping
Sleeping
File size: 8,012 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import random
import json
import numpy as np
from pathlib import Path
from typing import Iterable
from omegaconf import ListConfig
import cv2
import torch
from functools import partial
import torchvision as thv
from torch.utils.data import Dataset
from utils import util_sisr
from utils import util_image
from utils import util_common
from basicsr.data.transforms import augment
from basicsr.data.realesrgan_dataset import RealESRGANDataset
def get_transforms(transform_type, kwargs):
'''
Accepted optins in kwargs.
mean: scaler or sequence, for nornmalization
std: scaler or sequence, for nornmalization
crop_size: int or sequence, random or center cropping
scale, out_shape: for Bicubic
min_max: tuple or list with length 2, for cliping
'''
if transform_type == 'default':
transform = thv.transforms.Compose([
thv.transforms.ToTensor(),
thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
])
elif transform_type == 'resize_ccrop_norm':
transform = thv.transforms.Compose([
util_image.SmallestMaxSize(
max_size=kwargs.get('size'),
interpolation=kwargs.get('interpolation'),
),
thv.transforms.ToTensor(),
thv.transforms.CenterCrop(size=kwargs.get('size', None)),
thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
])
elif transform_type == 'ccrop_norm':
transform = thv.transforms.Compose([
thv.transforms.ToTensor(),
thv.transforms.CenterCrop(size=kwargs.get('size', None)),
thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
])
elif transform_type == 'rcrop_aug_norm':
transform = thv.transforms.Compose([
util_image.RandomCrop(pch_size=kwargs.get('pch_size', 256)),
util_image.SpatialAug(
only_hflip=kwargs.get('only_hflip', False),
only_vflip=kwargs.get('only_vflip', False),
only_hvflip=kwargs.get('only_hvflip', False),
),
util_image.ToTensor(max_value=kwargs.get('max_value')), # (ndarray, hwc) --> (Tensor, chw)
thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
])
elif transform_type == 'aug_norm':
transform = thv.transforms.Compose([
util_image.SpatialAug(
only_hflip=kwargs.get('only_hflip', False),
only_vflip=kwargs.get('only_vflip', False),
only_hvflip=kwargs.get('only_hvflip', False),
),
util_image.ToTensor(), # hwc --> chw
thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
])
else:
raise ValueError(f'Unexpected transform_variant {transform_variant}')
return transform
def create_dataset(dataset_config):
if dataset_config['type'] == 'base':
dataset = BaseData(**dataset_config['params'])
elif dataset_config['type'] == 'base_meta':
dataset = BaseDataMetaCond(**dataset_config['params'])
elif dataset_config['type'] == 'realesrgan':
dataset = RealESRGANDataset(dataset_config['params'])
else:
raise NotImplementedError(f"{dataset_config['type']}")
return dataset
class BaseData(Dataset):
def __init__(
self,
dir_path,
txt_path=None,
transform_type='default',
transform_kwargs={'mean':0.0, 'std':1.0},
extra_dir_path=None,
extra_transform_type=None,
extra_transform_kwargs=None,
length=None,
need_path=False,
im_exts=['png', 'jpg', 'jpeg', 'JPEG', 'bmp'],
recursive=False,
):
super().__init__()
file_paths_all = []
if dir_path is not None:
file_paths_all.extend(util_common.scan_files_from_folder(dir_path, im_exts, recursive))
if txt_path is not None:
file_paths_all.extend(util_common.readline_txt(txt_path))
self.file_paths = file_paths_all if length is None else random.sample(file_paths_all, length)
self.file_paths_all = file_paths_all
self.length = length
self.need_path = need_path
self.transform = get_transforms(transform_type, transform_kwargs)
self.extra_dir_path = extra_dir_path
if extra_dir_path is not None:
assert extra_transform_type is not None
self.extra_transform = get_transforms(extra_transform_type, extra_transform_kwargs)
def __len__(self):
return len(self.file_paths)
def __getitem__(self, index):
im_path_base = self.file_paths[index]
im_base = util_image.imread(im_path_base, chn='rgb', dtype='float32')
im_target = self.transform(im_base)
out = {'image':im_target, 'lq':im_target}
if self.extra_dir_path is not None:
im_path_extra = Path(self.extra_dir_path) / Path(im_path_base).name
im_extra = util_image.imread(im_path_extra, chn='rgb', dtype='float32')
im_extra = self.extra_transform(im_extra)
out['gt'] = im_extra
if self.need_path:
out['path'] = im_path_base
return out
def reset_dataset(self):
self.file_paths = random.sample(self.file_paths_all, self.length)
class BaseDataMetaCond(Dataset):
def __init__(
self,
meta_dir,
transform_type='default',
transform_kwargs={'mean':0.5, 'std':0.5},
length=None,
need_path=False,
cond_key='canny',
cond_transform_type='default',
cond_transform_kwargs={'mean':0.5, 'std':0.5},
):
super().__init__()
if not isinstance(meta_dir, ListConfig):
meta_dir = [meta_dir,]
meta_list = []
# for current_dir in meta_dir:
# for json_path in Path(current_dir).glob("*.json"):
# with open(json_path, 'r') as json_file:
# meta_info = json.load(json_file)
# meta_list.append(meta_info)
for current_dir in meta_dir:
meta_list.extend(sorted([str(x) for x in Path(current_dir).glob("*.json")]))
self.meta_list = meta_list if length is None else meta_list[:length]
self.cond_key = cond_key
self.length = length
self.need_path = need_path
self.transform = get_transforms(transform_type, transform_kwargs)
self.cond_trasform = get_transforms(cond_transform_type, cond_transform_kwargs)
def __len__(self):
return len(self.meta_list)
def __getitem__(self, index):
# meta_info = self.meta_list[index]
json_path = self.meta_list[index]
with open(json_path, 'r') as json_file:
meta_info = json.load(json_file)
# images
im_path = meta_info['source']
im_source = util_image.imread(im_path, chn='rgb', dtype='uint8')
im_source = self.transform(im_source)
out = {'image': im_source,}
if self.need_path:
out['path'] = im_path
# latent
if 'latent' in meta_info:
latent_path = meta_info['latent']
out['latent'] = np.load(latent_path)
# prompt
out['txt'] = meta_info['prompt']
# condition
cond_key = self.cond_key
cond_path = meta_info[cond_key]
if cond_key == 'canny':
cond = util_image.imread(cond_path, chn='gray', dtype='uint8')[:, :, None]
elif cond_key == 'seg':
cond = util_image.imread(cond_path, chn='rgb', dtype='uint8')
else:
raise ValueError(f"Unexpected cond key: {cond_key}")
cond = self.cond_trasform(cond)
out['cond'] = cond
return out
|