Spaces:
Sleeping
Sleeping
File size: 12,829 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""
A standalone PyTorch implementation for fast and efficient bicubic resampling.
The resulting values are the same to MATLAB function imresize('bicubic').
## Author: Sanghyun Son
## Email: sonsang35@gmail.com (primary), thstkdgus35@snu.ac.kr (secondary)
## Version: 1.2.0
## Last update: July 9th, 2020 (KST)
Dependency: torch
Example::
>>> import torch
>>> import core
>>> x = torch.arange(16).float().view(1, 1, 4, 4)
>>> y = core.imresize(x, sizes=(3, 3))
>>> print(y)
tensor([[[[ 0.7506, 2.1004, 3.4503],
[ 6.1505, 7.5000, 8.8499],
[11.5497, 12.8996, 14.2494]]]])
"""
import math
import typing
import torch
from torch.nn import functional as F
__all__ = ['imresize']
_I = typing.Optional[int]
_D = typing.Optional[torch.dtype]
def nearest_contribution(x: torch.Tensor) -> torch.Tensor:
range_around_0 = torch.logical_and(x.gt(-0.5), x.le(0.5))
cont = range_around_0.to(dtype=x.dtype)
return cont
def linear_contribution(x: torch.Tensor) -> torch.Tensor:
ax = x.abs()
range_01 = ax.le(1)
cont = (1 - ax) * range_01.to(dtype=x.dtype)
return cont
def cubic_contribution(x: torch.Tensor, a: float = -0.5) -> torch.Tensor:
ax = x.abs()
ax2 = ax * ax
ax3 = ax * ax2
range_01 = ax.le(1)
range_12 = torch.logical_and(ax.gt(1), ax.le(2))
cont_01 = (a + 2) * ax3 - (a + 3) * ax2 + 1
cont_01 = cont_01 * range_01.to(dtype=x.dtype)
cont_12 = (a * ax3) - (5 * a * ax2) + (8 * a * ax) - (4 * a)
cont_12 = cont_12 * range_12.to(dtype=x.dtype)
cont = cont_01 + cont_12
return cont
def gaussian_contribution(x: torch.Tensor, sigma: float = 2.0) -> torch.Tensor:
range_3sigma = (x.abs() <= 3 * sigma + 1)
# Normalization will be done after
cont = torch.exp(-x.pow(2) / (2 * sigma**2))
cont = cont * range_3sigma.to(dtype=x.dtype)
return cont
def discrete_kernel(kernel: str, scale: float, antialiasing: bool = True) -> torch.Tensor:
'''
For downsampling with integer scale only.
'''
downsampling_factor = int(1 / scale)
if kernel == 'cubic':
kernel_size_orig = 4
else:
raise ValueError('Pass!')
if antialiasing:
kernel_size = kernel_size_orig * downsampling_factor
else:
kernel_size = kernel_size_orig
if downsampling_factor % 2 == 0:
a = kernel_size_orig * (0.5 - 1 / (2 * kernel_size))
else:
kernel_size -= 1
a = kernel_size_orig * (0.5 - 1 / (kernel_size + 1))
with torch.no_grad():
r = torch.linspace(-a, a, steps=kernel_size)
k = cubic_contribution(r).view(-1, 1)
k = torch.matmul(k, k.t())
k /= k.sum()
return k
def reflect_padding(x: torch.Tensor, dim: int, pad_pre: int, pad_post: int) -> torch.Tensor:
'''
Apply reflect padding to the given Tensor.
Note that it is slightly different from the PyTorch functional.pad,
where boundary elements are used only once.
Instead, we follow the MATLAB implementation
which uses boundary elements twice.
For example,
[a, b, c, d] would become [b, a, b, c, d, c] with the PyTorch implementation,
while our implementation yields [a, a, b, c, d, d].
'''
b, c, h, w = x.size()
if dim == 2 or dim == -2:
padding_buffer = x.new_zeros(b, c, h + pad_pre + pad_post, w)
padding_buffer[..., pad_pre:(h + pad_pre), :].copy_(x)
for p in range(pad_pre):
padding_buffer[..., pad_pre - p - 1, :].copy_(x[..., p, :])
for p in range(pad_post):
padding_buffer[..., h + pad_pre + p, :].copy_(x[..., -(p + 1), :])
else:
padding_buffer = x.new_zeros(b, c, h, w + pad_pre + pad_post)
padding_buffer[..., pad_pre:(w + pad_pre)].copy_(x)
for p in range(pad_pre):
padding_buffer[..., pad_pre - p - 1].copy_(x[..., p])
for p in range(pad_post):
padding_buffer[..., w + pad_pre + p].copy_(x[..., -(p + 1)])
return padding_buffer
def padding(x: torch.Tensor,
dim: int,
pad_pre: int,
pad_post: int,
padding_type: typing.Optional[str] = 'reflect') -> torch.Tensor:
if padding_type is None:
return x
elif padding_type == 'reflect':
x_pad = reflect_padding(x, dim, pad_pre, pad_post)
else:
raise ValueError('{} padding is not supported!'.format(padding_type))
return x_pad
def get_padding(base: torch.Tensor, kernel_size: int, x_size: int) -> typing.Tuple[int, int, torch.Tensor]:
base = base.long()
r_min = base.min()
r_max = base.max() + kernel_size - 1
if r_min <= 0:
pad_pre = -r_min
pad_pre = pad_pre.item()
base += pad_pre
else:
pad_pre = 0
if r_max >= x_size:
pad_post = r_max - x_size + 1
pad_post = pad_post.item()
else:
pad_post = 0
return pad_pre, pad_post, base
def get_weight(dist: torch.Tensor,
kernel_size: int,
kernel: str = 'cubic',
sigma: float = 2.0,
antialiasing_factor: float = 1) -> torch.Tensor:
buffer_pos = dist.new_zeros(kernel_size, len(dist))
for idx, buffer_sub in enumerate(buffer_pos):
buffer_sub.copy_(dist - idx)
# Expand (downsampling) / Shrink (upsampling) the receptive field.
buffer_pos *= antialiasing_factor
if kernel == 'cubic':
weight = cubic_contribution(buffer_pos)
elif kernel == 'gaussian':
weight = gaussian_contribution(buffer_pos, sigma=sigma)
else:
raise ValueError('{} kernel is not supported!'.format(kernel))
weight /= weight.sum(dim=0, keepdim=True)
return weight
def reshape_tensor(x: torch.Tensor, dim: int, kernel_size: int) -> torch.Tensor:
# Resize height
if dim == 2 or dim == -2:
k = (kernel_size, 1)
h_out = x.size(-2) - kernel_size + 1
w_out = x.size(-1)
# Resize width
else:
k = (1, kernel_size)
h_out = x.size(-2)
w_out = x.size(-1) - kernel_size + 1
unfold = F.unfold(x, k)
unfold = unfold.view(unfold.size(0), -1, h_out, w_out)
return unfold
def reshape_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _I, _I, int, int]:
if x.dim() == 4:
b, c, h, w = x.size()
elif x.dim() == 3:
c, h, w = x.size()
b = None
elif x.dim() == 2:
h, w = x.size()
b = c = None
else:
raise ValueError('{}-dim Tensor is not supported!'.format(x.dim()))
x = x.view(-1, 1, h, w)
return x, b, c, h, w
def reshape_output(x: torch.Tensor, b: _I, c: _I) -> torch.Tensor:
rh = x.size(-2)
rw = x.size(-1)
# Back to the original dimension
if b is not None:
x = x.view(b, c, rh, rw) # 4-dim
else:
if c is not None:
x = x.view(c, rh, rw) # 3-dim
else:
x = x.view(rh, rw) # 2-dim
return x
def cast_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _D]:
if x.dtype != torch.float32 or x.dtype != torch.float64:
dtype = x.dtype
x = x.float()
else:
dtype = None
return x, dtype
def cast_output(x: torch.Tensor, dtype: _D) -> torch.Tensor:
if dtype is not None:
if not dtype.is_floating_point:
x = x - x.detach() + x.round()
# To prevent over/underflow when converting types
if dtype is torch.uint8:
x = x.clamp(0, 255)
x = x.to(dtype=dtype)
return x
def resize_1d(x: torch.Tensor,
dim: int,
size: int,
scale: float,
kernel: str = 'cubic',
sigma: float = 2.0,
padding_type: str = 'reflect',
antialiasing: bool = True) -> torch.Tensor:
'''
Args:
x (torch.Tensor): A torch.Tensor of dimension (B x C, 1, H, W).
dim (int):
scale (float):
size (int):
Return:
'''
# Identity case
if scale == 1:
return x
# Default bicubic kernel with antialiasing (only when downsampling)
if kernel == 'cubic':
kernel_size = 4
else:
kernel_size = math.floor(6 * sigma)
if antialiasing and (scale < 1):
antialiasing_factor = scale
kernel_size = math.ceil(kernel_size / antialiasing_factor)
else:
antialiasing_factor = 1
# We allow margin to both sizes
kernel_size += 2
# Weights only depend on the shape of input and output,
# so we do not calculate gradients here.
with torch.no_grad():
pos = torch.linspace(
0,
size - 1,
steps=size,
dtype=x.dtype,
device=x.device,
)
pos = (pos + 0.5) / scale - 0.5
base = pos.floor() - (kernel_size // 2) + 1
dist = pos - base
weight = get_weight(
dist,
kernel_size,
kernel=kernel,
sigma=sigma,
antialiasing_factor=antialiasing_factor,
)
pad_pre, pad_post, base = get_padding(base, kernel_size, x.size(dim))
# To backpropagate through x
x_pad = padding(x, dim, pad_pre, pad_post, padding_type=padding_type)
unfold = reshape_tensor(x_pad, dim, kernel_size)
# Subsampling first
if dim == 2 or dim == -2:
sample = unfold[..., base, :]
weight = weight.view(1, kernel_size, sample.size(2), 1)
else:
sample = unfold[..., base]
weight = weight.view(1, kernel_size, 1, sample.size(3))
# Apply the kernel
x = sample * weight
x = x.sum(dim=1, keepdim=True)
return x
def downsampling_2d(x: torch.Tensor, k: torch.Tensor, scale: int, padding_type: str = 'reflect') -> torch.Tensor:
c = x.size(1)
k_h = k.size(-2)
k_w = k.size(-1)
k = k.to(dtype=x.dtype, device=x.device)
k = k.view(1, 1, k_h, k_w)
k = k.repeat(c, c, 1, 1)
e = torch.eye(c, dtype=k.dtype, device=k.device, requires_grad=False)
e = e.view(c, c, 1, 1)
k = k * e
pad_h = (k_h - scale) // 2
pad_w = (k_w - scale) // 2
x = padding(x, -2, pad_h, pad_h, padding_type=padding_type)
x = padding(x, -1, pad_w, pad_w, padding_type=padding_type)
y = F.conv2d(x, k, padding=0, stride=scale)
return y
def imresize(x: torch.Tensor,
scale: typing.Optional[float] = None,
sizes: typing.Optional[typing.Tuple[int, int]] = None,
kernel: typing.Union[str, torch.Tensor] = 'cubic',
sigma: float = 2,
rotation_degree: float = 0,
padding_type: str = 'reflect',
antialiasing: bool = True) -> torch.Tensor:
"""
Args:
x (torch.Tensor):
scale (float):
sizes (tuple(int, int)):
kernel (str, default='cubic'):
sigma (float, default=2):
rotation_degree (float, default=0):
padding_type (str, default='reflect'):
antialiasing (bool, default=True):
Return:
torch.Tensor:
"""
if scale is None and sizes is None:
raise ValueError('One of scale or sizes must be specified!')
if scale is not None and sizes is not None:
raise ValueError('Please specify scale or sizes to avoid conflict!')
x, b, c, h, w = reshape_input(x)
if sizes is None and scale is not None:
'''
# Check if we can apply the convolution algorithm
scale_inv = 1 / scale
if isinstance(kernel, str) and scale_inv.is_integer():
kernel = discrete_kernel(kernel, scale, antialiasing=antialiasing)
elif isinstance(kernel, torch.Tensor) and not scale_inv.is_integer():
raise ValueError(
'An integer downsampling factor '
'should be used with a predefined kernel!'
)
'''
# Determine output size
sizes = (math.ceil(h * scale), math.ceil(w * scale))
scales = (scale, scale)
if scale is None and sizes is not None:
scales = (sizes[0] / h, sizes[1] / w)
x, dtype = cast_input(x)
if isinstance(kernel, str) and sizes is not None:
# Core resizing module
x = resize_1d(
x,
-2,
size=sizes[0],
scale=scales[0],
kernel=kernel,
sigma=sigma,
padding_type=padding_type,
antialiasing=antialiasing)
x = resize_1d(
x,
-1,
size=sizes[1],
scale=scales[1],
kernel=kernel,
sigma=sigma,
padding_type=padding_type,
antialiasing=antialiasing)
elif isinstance(kernel, torch.Tensor) and scale is not None:
x = downsampling_2d(x, kernel, scale=int(1 / scale))
x = reshape_output(x, b, c)
x = cast_output(x, dtype)
return x
|