Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
# Power by Zongsheng Yue 2021-11-24 16:54:19 | |
import sys | |
import cv2 | |
import math | |
import torch | |
import random | |
import numpy as np | |
from scipy import fft | |
from pathlib import Path | |
from einops import rearrange | |
from skimage import img_as_ubyte, img_as_float32 | |
# --------------------------Metrics---------------------------- | |
def ssim(img1, img2): | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_ssim(im1, im2, border=0, ycbcr=False): | |
''' | |
SSIM the same outputs as MATLAB's | |
im1, im2: h x w x , [0, 255], uint8 | |
''' | |
if not im1.shape == im2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if ycbcr: | |
im1 = rgb2ycbcr(im1, True) | |
im2 = rgb2ycbcr(im2, True) | |
h, w = im1.shape[:2] | |
im1 = im1[border:h-border, border:w-border] | |
im2 = im2[border:h-border, border:w-border] | |
if im1.ndim == 2: | |
return ssim(im1, im2) | |
elif im1.ndim == 3: | |
if im1.shape[2] == 3: | |
ssims = [] | |
for i in range(3): | |
ssims.append(ssim(im1[:,:,i], im2[:,:,i])) | |
return np.array(ssims).mean() | |
elif im1.shape[2] == 1: | |
return ssim(np.squeeze(im1), np.squeeze(im2)) | |
else: | |
raise ValueError('Wrong input image dimensions.') | |
def calculate_psnr(im1, im2, border=0, ycbcr=False): | |
''' | |
PSNR metric. | |
im1, im2: h x w x , [0, 255], uint8 | |
''' | |
if not im1.shape == im2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if ycbcr: | |
im1 = rgb2ycbcr(im1, True) | |
im2 = rgb2ycbcr(im2, True) | |
h, w = im1.shape[:2] | |
im1 = im1[border:h-border, border:w-border] | |
im2 = im2[border:h-border, border:w-border] | |
im1 = im1.astype(np.float64) | |
im2 = im2.astype(np.float64) | |
mse = np.mean((im1 - im2)**2) | |
if mse == 0: | |
return float('inf') | |
return 20 * math.log10(255.0 / math.sqrt(mse)) | |
def normalize_np(im, mean=0.5, std=0.5, reverse=False): | |
''' | |
Input: | |
im: h x w x c, numpy array | |
Normalize: (im - mean) / std | |
Reverse: im * std + mean | |
''' | |
if not isinstance(mean, (list, tuple)): | |
mean = [mean, ] * im.shape[2] | |
mean = np.array(mean).reshape([1, 1, im.shape[2]]) | |
if not isinstance(std, (list, tuple)): | |
std = [std, ] * im.shape[2] | |
std = np.array(std).reshape([1, 1, im.shape[2]]) | |
if not reverse: | |
out = (im.astype(np.float32) - mean) / std | |
else: | |
out = im.astype(np.float32) * std + mean | |
return out | |
def normalize_th(im, mean=0.5, std=0.5, reverse=False): | |
''' | |
Input: | |
im: b x c x h x w, torch tensor | |
Normalize: (im - mean) / std | |
Reverse: im * std + mean | |
''' | |
if not isinstance(mean, (list, tuple)): | |
mean = [mean, ] * im.shape[1] | |
mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1]) | |
if not isinstance(std, (list, tuple)): | |
std = [std, ] * im.shape[1] | |
std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1]) | |
if not reverse: | |
out = (im - mean) / std | |
else: | |
out = im * std + mean | |
return out | |
# ------------------------Image format-------------------------- | |
def rgb2ycbcr(im, only_y=True): | |
''' | |
same as matlab rgb2ycbcr | |
Input: | |
im: uint8 [0,255] or float [0,1] | |
only_y: only return Y channel | |
''' | |
# transform to float64 data type, range [0, 255] | |
if im.dtype == np.uint8: | |
im_temp = im.astype(np.float64) | |
else: | |
im_temp = (im * 255).astype(np.float64) | |
# convert | |
if only_y: | |
rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0 | |
else: | |
rlt = np.matmul(im_temp, np.array([[65.481, -37.797, 112.0 ], | |
[128.553, -74.203, -93.786], | |
[24.966, 112.0, -18.214]])/255.0) + [16, 128, 128] | |
if im.dtype == np.uint8: | |
rlt = rlt.round() | |
else: | |
rlt /= 255. | |
return rlt.astype(im.dtype) | |
def rgb2ycbcrTorch(im, only_y=True): | |
''' | |
same as matlab rgb2ycbcr | |
Input: | |
im: float [0,1], N x 3 x H x W | |
only_y: only return Y channel | |
''' | |
# transform to range [0,255.0] | |
im_temp = im.permute([0,2,3,1]) * 255.0 # N x H x W x C --> N x H x W x C | |
# convert | |
if only_y: | |
rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966], | |
device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0 | |
else: | |
scale = torch.tensor( | |
[[65.481, -37.797, 112.0 ], | |
[128.553, -74.203, -93.786], | |
[24.966, 112.0, -18.214]], | |
device=im.device, dtype=im.dtype | |
) / 255.0 | |
bias = torch.tensor([16, 128, 128], device=im.device, dtype=im.dtype).view([-1, 1, 1, 3]) | |
rlt = torch.matmul(im_temp, scale) + bias | |
rlt /= 255.0 | |
rlt.clamp_(0.0, 1.0) | |
return rlt.permute([0, 3, 1, 2]) | |
def ycbcr2rgbTorch(im): | |
''' | |
same as matlab ycbcr2rgb | |
Input: | |
im: float [0,1], N x 3 x H x W | |
only_y: only return Y channel | |
''' | |
# transform to range [0,255.0] | |
im_temp = im.permute([0,2,3,1]) * 255.0 # N x H x W x C --> N x H x W x C | |
# convert | |
scale = torch.tensor( | |
[[0.00456621, 0.00456621, 0.00456621], | |
[0, -0.00153632, 0.00791071], | |
[0.00625893, -0.00318811, 0]], | |
device=im.device, dtype=im.dtype | |
) * 255.0 | |
bias = torch.tensor( | |
[-222.921, 135.576, -276.836], device=im.device, dtype=im.dtype | |
).view([-1, 1, 1, 3]) | |
rlt = torch.matmul(im_temp, scale) + bias | |
rlt /= 255.0 | |
rlt.clamp_(0.0, 1.0) | |
return rlt.permute([0, 3, 1, 2]) | |
def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
flag_tensor = torch.is_tensor(tensor) | |
if flag_tensor: | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1 and flag_tensor: | |
result = result[0] | |
return result | |
def img2tensor(imgs, bgr2rgb=False, out_type=torch.float32): | |
"""Convert image numpy arrays into torch tensor. | |
Args: | |
imgs (Array or list[array]): Accept shapes: | |
3) list of numpy arrays | |
1) 3D numpy array of shape (H x W x 3/1); | |
2) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
Returns: | |
(array or list): 4D ndarray of shape (1 x C x H x W) | |
""" | |
def _img2tensor(img): | |
if img.ndim == 2: | |
tensor = torch.from_numpy(img[None, None,]).type(out_type) | |
elif img.ndim == 3: | |
if bgr2rgb: | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0) | |
else: | |
raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array') | |
return tensor | |
if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))): | |
raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}') | |
flag_numpy = isinstance(imgs, np.ndarray) | |
if flag_numpy: | |
imgs = [imgs,] | |
result = [] | |
for _img in imgs: | |
result.append(_img2tensor(_img)) | |
if len(result) == 1 and flag_numpy: | |
result = result[0] | |
return result | |
# ------------------------Image resize----------------------------- | |
def imresize_np(img, scale, antialiasing=True): | |
# Now the scale should be the same for H and W | |
# input: img: Numpy, HWC or HW [0,1] | |
# output: HWC or HW [0,1] w/o round | |
img = torch.from_numpy(img) | |
need_squeeze = True if img.dim() == 2 else False | |
if need_squeeze: | |
img.unsqueeze_(2) | |
in_H, in_W, in_C = img.size() | |
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) | |
kernel_width = 4 | |
kernel = 'cubic' | |
# Return the desired dimension order for performing the resize. The | |
# strategy is to perform the resize first along the dimension with the | |
# smallest scale factor. | |
# Now we do not support this. | |
# get weights and indices | |
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( | |
in_H, out_H, scale, kernel, kernel_width, antialiasing) | |
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( | |
in_W, out_W, scale, kernel, kernel_width, antialiasing) | |
# process H dimension | |
# symmetric copying | |
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) | |
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) | |
sym_patch = img[:sym_len_Hs, :, :] | |
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) | |
sym_patch = img[-sym_len_He:, :, :] | |
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) | |
out_1 = torch.FloatTensor(out_H, in_W, in_C) | |
kernel_width = weights_H.size(1) | |
for i in range(out_H): | |
idx = int(indices_H[i][0]) | |
for j in range(out_C): | |
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) | |
# process W dimension | |
# symmetric copying | |
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) | |
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) | |
sym_patch = out_1[:, :sym_len_Ws, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) | |
sym_patch = out_1[:, -sym_len_We:, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) | |
out_2 = torch.FloatTensor(out_H, out_W, in_C) | |
kernel_width = weights_W.size(1) | |
for i in range(out_W): | |
idx = int(indices_W[i][0]) | |
for j in range(out_C): | |
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) | |
if need_squeeze: | |
out_2.squeeze_() | |
return out_2.numpy() | |
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): | |
if (scale < 1) and (antialiasing): | |
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width | |
kernel_width = kernel_width / scale | |
# Output-space coordinates | |
x = torch.linspace(1, out_length, out_length) | |
# Input-space coordinates. Calculate the inverse mapping such that 0.5 | |
# in output space maps to 0.5 in input space, and 0.5+scale in output | |
# space maps to 1.5 in input space. | |
u = x / scale + 0.5 * (1 - 1 / scale) | |
# What is the left-most pixel that can be involved in the computation? | |
left = torch.floor(u - kernel_width / 2) | |
# What is the maximum number of pixels that can be involved in the | |
# computation? Note: it's OK to use an extra pixel here; if the | |
# corresponding weights are all zero, it will be eliminated at the end | |
# of this function. | |
P = math.ceil(kernel_width) + 2 | |
# The indices of the input pixels involved in computing the k-th output | |
# pixel are in row k of the indices matrix. | |
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( | |
1, P).expand(out_length, P) | |
# The weights used to compute the k-th output pixel are in row k of the | |
# weights matrix. | |
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices | |
# apply cubic kernel | |
if (scale < 1) and (antialiasing): | |
weights = scale * cubic(distance_to_center * scale) | |
else: | |
weights = cubic(distance_to_center) | |
# Normalize the weights matrix so that each row sums to 1. | |
weights_sum = torch.sum(weights, 1).view(out_length, 1) | |
weights = weights / weights_sum.expand(out_length, P) | |
# If a column in weights is all zero, get rid of it. only consider the first and last column. | |
weights_zero_tmp = torch.sum((weights == 0), 0) | |
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): | |
indices = indices.narrow(1, 1, P - 2) | |
weights = weights.narrow(1, 1, P - 2) | |
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): | |
indices = indices.narrow(1, 0, P - 2) | |
weights = weights.narrow(1, 0, P - 2) | |
weights = weights.contiguous() | |
indices = indices.contiguous() | |
sym_len_s = -indices.min() + 1 | |
sym_len_e = indices.max() - in_length | |
indices = indices + sym_len_s - 1 | |
return weights, indices, int(sym_len_s), int(sym_len_e) | |
# matlab 'imresize' function, now only support 'bicubic' | |
def cubic(x): | |
absx = torch.abs(x) | |
absx2 = absx**2 | |
absx3 = absx**3 | |
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ | |
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) | |
# ------------------------Image I/O----------------------------- | |
def imread(path, chn='rgb', dtype='float32', force_gray2rgb=True, force_rgba2rgb=False): | |
''' | |
Read image. | |
chn: 'rgb', 'bgr' or 'gray' | |
out: | |
im: h x w x c, numpy tensor | |
''' | |
try: | |
im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) # BGR, uint8 | |
except: | |
print(str(path)) | |
if im is None: | |
print(str(path)) | |
if chn.lower() == 'gray': | |
assert im.ndim == 2, f"{str(path)} can't be successfuly read!" | |
else: | |
if im.ndim == 2: | |
if force_gray2rgb: | |
im = np.stack([im, im, im], axis=2) | |
else: | |
raise ValueError(f"{str(path)} has {im.ndim} channels!") | |
elif im.ndim == 4: | |
if force_rgba2rgb: | |
im = im[:, :, :3] | |
else: | |
raise ValueError(f"{str(path)} has {im.ndim} channels!") | |
else: | |
if chn.lower() == 'rgb': | |
im = bgr2rgb(im) | |
elif chn.lower() == 'bgr': | |
pass | |
if dtype == 'float32': | |
im = im.astype(np.float32) / 255. | |
elif dtype == 'float64': | |
im = im.astype(np.float64) / 255. | |
elif dtype == 'uint8': | |
pass | |
else: | |
sys.exit('Please input corrected dtype: float32, float64 or uint8!') | |
return im | |
def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None): | |
''' | |
Save image. | |
Input: | |
im: h x w x c, numpy tensor | |
path: the saving path | |
chn: the channel order of the im, | |
''' | |
im = im_in.copy() | |
if isinstance(path, str): | |
path = Path(path) | |
if dtype_in != 'uint8': | |
im = img_as_ubyte(im) | |
if chn.lower() == 'rgb' and im.ndim == 3: | |
im = rgb2bgr(im) | |
if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']: | |
flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)]) | |
else: | |
flag = cv2.imwrite(str(path), im) | |
return flag | |
def jpeg_compress(im, qf, chn_in='rgb'): | |
''' | |
Input: | |
im: h x w x 3 array | |
qf: compress factor, (0, 100] | |
chn_in: 'rgb' or 'bgr' | |
Return: | |
Compressed Image with channel order: chn_in | |
''' | |
# transform to BGR channle and uint8 data type | |
im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im | |
if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr) | |
# JPEG compress | |
flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf]) | |
assert flag | |
im_jpg_bgr = cv2.imdecode(encimg, 1) # uint8, BGR | |
# transform back to original channel and the original data type | |
im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr | |
if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype) | |
return im_out | |
# ------------------------Augmentation----------------------------- | |
def data_aug_np(image, mode): | |
''' | |
Performs data augmentation of the input image | |
Input: | |
image: a cv2 (OpenCV) image | |
mode: int. Choice of transformation to apply to the image | |
0 - no transformation | |
1 - flip up and down | |
2 - rotate counterwise 90 degree | |
3 - rotate 90 degree and flip up and down | |
4 - rotate 180 degree | |
5 - rotate 180 degree and flip | |
6 - rotate 270 degree | |
7 - rotate 270 degree and flip | |
''' | |
if mode == 0: | |
# original | |
out = image | |
elif mode == 1: | |
# flip up and down | |
out = np.flipud(image) | |
elif mode == 2: | |
# rotate counterwise 90 degree | |
out = np.rot90(image) | |
elif mode == 3: | |
# rotate 90 degree and flip up and down | |
out = np.rot90(image) | |
out = np.flipud(out) | |
elif mode == 4: | |
# rotate 180 degree | |
out = np.rot90(image, k=2) | |
elif mode == 5: | |
# rotate 180 degree and flip | |
out = np.rot90(image, k=2) | |
out = np.flipud(out) | |
elif mode == 6: | |
# rotate 270 degree | |
out = np.rot90(image, k=3) | |
elif mode == 7: | |
# rotate 270 degree and flip | |
out = np.rot90(image, k=3) | |
out = np.flipud(out) | |
else: | |
raise Exception('Invalid choice of image transformation') | |
return out.copy() | |
def inverse_data_aug_np(image, mode): | |
''' | |
Performs inverse data augmentation of the input image | |
''' | |
if mode == 0: | |
# original | |
out = image | |
elif mode == 1: | |
out = np.flipud(image) | |
elif mode == 2: | |
out = np.rot90(image, axes=(1,0)) | |
elif mode == 3: | |
out = np.flipud(image) | |
out = np.rot90(out, axes=(1,0)) | |
elif mode == 4: | |
out = np.rot90(image, k=2, axes=(1,0)) | |
elif mode == 5: | |
out = np.flipud(image) | |
out = np.rot90(out, k=2, axes=(1,0)) | |
elif mode == 6: | |
out = np.rot90(image, k=3, axes=(1,0)) | |
elif mode == 7: | |
# rotate 270 degree and flip | |
out = np.flipud(image) | |
out = np.rot90(out, k=3, axes=(1,0)) | |
else: | |
raise Exception('Invalid choice of image transformation') | |
return out | |
# ----------------------Visualization---------------------------- | |
def imshow(x, title=None, cbar=False): | |
import matplotlib.pyplot as plt | |
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') | |
if title: | |
plt.title(title) | |
if cbar: | |
plt.colorbar() | |
plt.show() | |
def imblend_with_mask(im, mask, alpha=0.25): | |
""" | |
Input: | |
im, mask: h x w x c numpy array, uint8, [0, 255] | |
alpha: scaler in [0.0, 1.0] | |
""" | |
edge_map = cv2.Canny(mask, 100, 200).astype(np.float32)[:, :, None] / 255. | |
assert mask.dtype == np.uint8 | |
mask = mask.astype(np.float32) / 255. | |
if mask.ndim == 2: | |
mask = mask[:, :, None] | |
back_color = np.array([159, 121, 238], dtype=np.float32).reshape((1,1,3)) | |
blend = im.astype(np.float32) * alpha + (1 - alpha) * back_color | |
blend = np.clip(blend, 0, 255) | |
out = im.astype(np.float32) * (1 - mask) + blend * mask | |
# paste edge | |
out = out * (1 - edge_map) + np.array([0,255,0], dtype=np.float32).reshape((1,1,3)) * edge_map | |
return out.astype(np.uint8) | |
# -----------------------Covolution------------------------------ | |
def imgrad(im, pading_mode='mirror'): | |
''' | |
Calculate image gradient. | |
Input: | |
im: h x w x c numpy array | |
''' | |
from scipy.ndimage import correlate # lazy import | |
wx = np.array([[0, 0, 0], | |
[-1, 1, 0], | |
[0, 0, 0]], dtype=np.float32) | |
wy = np.array([[0, -1, 0], | |
[0, 1, 0], | |
[0, 0, 0]], dtype=np.float32) | |
if im.ndim == 3: | |
gradx = np.stack( | |
[correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])], | |
axis=2 | |
) | |
grady = np.stack( | |
[correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])], | |
axis=2 | |
) | |
grad = np.concatenate((gradx, grady), axis=2) | |
else: | |
gradx = correlate(im, wx, mode=pading_mode) | |
grady = correlate(im, wy, mode=pading_mode) | |
grad = np.stack((gradx, grady), axis=2) | |
return {'gradx': gradx, 'grady': grady, 'grad':grad} | |
def imgrad_fft(im): | |
''' | |
Calculate image gradient. | |
Input: | |
im: h x w x c numpy array | |
''' | |
wx = np.rot90(np.array([[0, 0, 0], | |
[-1, 1, 0], | |
[0, 0, 0]], dtype=np.float32), k=2) | |
gradx = convfft(im, wx) | |
wy = np.rot90(np.array([[0, -1, 0], | |
[0, 1, 0], | |
[0, 0, 0]], dtype=np.float32), k=2) | |
grady = convfft(im, wy) | |
grad = np.concatenate((gradx, grady), axis=2) | |
return {'gradx': gradx, 'grady': grady, 'grad':grad} | |
def convfft(im, weight): | |
''' | |
Convolution with FFT | |
Input: | |
im: h1 x w1 x c numpy array | |
weight: h2 x w2 numpy array | |
Output: | |
out: h1 x w1 x c numpy array | |
''' | |
axes = (0,1) | |
otf = psf2otf(weight, im.shape[:2]) | |
if im.ndim == 3: | |
otf = np.tile(otf[:, :, None], (1,1,im.shape[2])) | |
out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real | |
return out | |
def psf2otf(psf, shape): | |
""" | |
MATLAB psf2otf function. | |
Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py. | |
Input: | |
psf : h x w numpy array | |
shape : list or tuple, output shape of the OTF array | |
Output: | |
otf : OTF array with the desirable shape | |
""" | |
if np.all(psf == 0): | |
return np.zeros_like(psf) | |
inshape = psf.shape | |
# Pad the PSF to outsize | |
psf = zero_pad(psf, shape, position='corner') | |
# Circularly shift OTF so that the 'center' of the PSF is [0,0] element of the array | |
for axis, axis_size in enumerate(inshape): | |
psf = np.roll(psf, -int(axis_size / 2), axis=axis) | |
# Compute the OTF | |
otf = fft.fft2(psf) | |
# Estimate the rough number of operations involved in the FFT | |
# and discard the PSF imaginary part if within roundoff error | |
# roundoff error = machine epsilon = sys.float_info.epsilon | |
# or np.finfo().eps | |
n_ops = np.sum(psf.size * np.log2(psf.shape)) | |
otf = np.real_if_close(otf, tol=n_ops) | |
return otf | |
def convtorch(im, weight, mode='reflect'): | |
''' | |
Image convolution with pytorch | |
Input: | |
im: b x c_in x h x w torch tensor | |
weight: c_out x c_in x k x k torch tensor | |
Output: | |
out: c x h x w torch tensor | |
''' | |
radius = weight.shape[-1] | |
chn = im.shape[1] | |
im_pad = torch.nn.functional.pad(im, pad=(radius // 2, )*4, mode=mode) | |
out = torch.nn.functional.conv2d(im_pad, weight, padding=0, groups=chn) | |
return out | |
# ----------------------Patch Cropping---------------------------- | |
def random_crop(im, pch_size): | |
''' | |
Randomly crop a patch from the give image. | |
''' | |
h, w = im.shape[:2] | |
# padding if necessary | |
if h < pch_size or w < pch_size: | |
pad_h = min(max(0, pch_size - h), h) | |
pad_w = min(max(0, pch_size - w), w) | |
im = cv2.copyMakeBorder(im, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) | |
h, w = im.shape[:2] | |
if h == pch_size: | |
ind_h = 0 | |
elif h > pch_size: | |
ind_h = random.randint(0, h-pch_size) | |
else: | |
raise ValueError('Image height is smaller than the patch size') | |
if w == pch_size: | |
ind_w = 0 | |
elif w > pch_size: | |
ind_w = random.randint(0, w-pch_size) | |
else: | |
raise ValueError('Image width is smaller than the patch size') | |
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,] | |
return im_pch | |
class ToTensor: | |
def __init__(self, max_value=1.0): | |
self.max_value = max_value | |
def __call__(self, im): | |
assert isinstance(im, np.ndarray) | |
if im.ndim == 2: | |
im = im[:, :, np.newaxis] | |
if im.dtype == np.uint8: | |
assert self.max_value == 255. | |
out = torch.from_numpy(im.astype(np.float32).transpose(2,0,1) / self.max_value) | |
else: | |
assert self.max_value == 1.0 | |
out = torch.from_numpy(im.transpose(2,0,1)) | |
return out | |
class RandomCrop: | |
def __init__(self, pch_size, pass_crop=False): | |
self.pch_size = pch_size | |
self.pass_crop = pass_crop | |
def __call__(self, im): | |
if self.pass_crop: | |
return im | |
if isinstance(im, list) or isinstance(im, tuple): | |
out = [] | |
for current_im in im: | |
out.append(random_crop(current_im, self.pch_size)) | |
else: | |
out = random_crop(im, self.pch_size) | |
return out | |
class ImageSpliterNp: | |
def __init__(self, im, pch_size, stride, sf=1): | |
''' | |
Input: | |
im: h x w x c, numpy array, [0, 1], low-resolution image in SR | |
pch_size, stride: patch setting | |
sf: scale factor in image super-resolution | |
''' | |
assert stride <= pch_size | |
self.stride = stride | |
self.pch_size = pch_size | |
self.sf = sf | |
if im.ndim == 2: | |
im = im[:, :, None] | |
height, width, chn = im.shape | |
self.height_starts_list = self.extract_starts(height) | |
self.width_starts_list = self.extract_starts(width) | |
self.length = self.__len__() | |
self.num_pchs = 0 | |
self.im_ori = im | |
self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) | |
self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) | |
def extract_starts(self, length): | |
starts = list(range(0, length, self.stride)) | |
if starts[-1] + self.pch_size > length: | |
starts[-1] = length - self.pch_size | |
return starts | |
def __len__(self): | |
return len(self.height_starts_list) * len(self.width_starts_list) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
if self.num_pchs < self.length: | |
w_start_idx = self.num_pchs // len(self.height_starts_list) | |
w_start = self.width_starts_list[w_start_idx] * self.sf | |
w_end = w_start + self.pch_size * self.sf | |
h_start_idx = self.num_pchs % len(self.height_starts_list) | |
h_start = self.height_starts_list[h_start_idx] * self.sf | |
h_end = h_start + self.pch_size * self.sf | |
pch = self.im_ori[h_start:h_end, w_start:w_end,] | |
self.w_start, self.w_end = w_start, w_end | |
self.h_start, self.h_end = h_start, h_end | |
self.num_pchs += 1 | |
else: | |
raise StopIteration(0) | |
return pch, (h_start, h_end, w_start, w_end) | |
def update(self, pch_res, index_infos): | |
''' | |
Input: | |
pch_res: pch_size x pch_size x 3, [0,1] | |
index_infos: (h_start, h_end, w_start, w_end) | |
''' | |
if index_infos is None: | |
w_start, w_end = self.w_start, self.w_end | |
h_start, h_end = self.h_start, self.h_end | |
else: | |
h_start, h_end, w_start, w_end = index_infos | |
self.im_res[h_start:h_end, w_start:w_end] += pch_res | |
self.pixel_count[h_start:h_end, w_start:w_end] += 1 | |
def gather(self): | |
assert np.all(self.pixel_count != 0) | |
return self.im_res / self.pixel_count | |
class ImageSpliterTh: | |
def __init__(self, im, pch_size, stride, sf=1, extra_bs=1, weight_type='Gaussian'): | |
''' | |
Input: | |
im: n x c x h x w, torch tensor, float, low-resolution image in SR | |
pch_size, stride: patch setting | |
sf: scale factor in image super-resolution | |
pch_bs: aggregate pchs to processing, only used when inputing single image | |
''' | |
assert weight_type in ['Gaussian', 'ones'] | |
self.weight_type = weight_type | |
assert stride <= pch_size | |
self.stride = stride | |
self.pch_size = pch_size | |
self.sf = sf | |
self.extra_bs = extra_bs | |
bs, chn, height, width= im.shape | |
self.true_bs = bs | |
self.height_starts_list = self.extract_starts(height) | |
self.width_starts_list = self.extract_starts(width) | |
self.starts_list = [] | |
for ii in self.height_starts_list: | |
for jj in self.width_starts_list: | |
self.starts_list.append([ii, jj]) | |
self.length = self.__len__() | |
self.count_pchs = 0 | |
self.im_ori = im | |
self.dtype = torch.float64 | |
self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=self.dtype, device=im.device) | |
self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=self.dtype, device=im.device) | |
def extract_starts(self, length): | |
if length <= self.pch_size: | |
starts = [0,] | |
else: | |
starts = list(range(0, length, self.stride)) | |
for ii in range(len(starts)): | |
if starts[ii] + self.pch_size > length: | |
starts[ii] = length - self.pch_size | |
starts = sorted(set(starts), key=starts.index) | |
return starts | |
def __len__(self): | |
return len(self.height_starts_list) * len(self.width_starts_list) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
if self.count_pchs < self.length: | |
index_infos = [] | |
current_starts_list = self.starts_list[self.count_pchs:self.count_pchs+self.extra_bs] | |
for ii, (h_start, w_start) in enumerate(current_starts_list): | |
w_end = w_start + self.pch_size | |
h_end = h_start + self.pch_size | |
current_pch = self.im_ori[:, :, h_start:h_end, w_start:w_end] | |
if ii == 0: | |
pch = current_pch | |
else: | |
pch = torch.cat([pch, current_pch], dim=0) | |
h_start *= self.sf | |
h_end *= self.sf | |
w_start *= self.sf | |
w_end *= self.sf | |
index_infos.append([h_start, h_end, w_start, w_end]) | |
self.count_pchs += len(current_starts_list) | |
else: | |
raise StopIteration() | |
return pch, index_infos | |
def update(self, pch_res, index_infos): | |
''' | |
Input: | |
pch_res: (n*extra_bs) x c x pch_size x pch_size, float | |
index_infos: [(h_start, h_end, w_start, w_end),] | |
''' | |
assert pch_res.shape[0] % self.true_bs == 0 | |
pch_list = torch.split(pch_res, self.true_bs, dim=0) | |
assert len(pch_list) == len(index_infos) | |
for ii, (h_start, h_end, w_start, w_end) in enumerate(index_infos): | |
current_pch = pch_list[ii].type(self.dtype) | |
current_weight = self.get_weight(current_pch.shape[-2], current_pch.shape[-1]) | |
self.im_res[:, :, h_start:h_end, w_start:w_end] += current_pch * current_weight | |
self.pixel_count[:, :, h_start:h_end, w_start:w_end] += current_weight | |
def generate_kernel_1d(ksize): | |
sigma = 0.3 * ((ksize - 1) * 0.5 - 1) + 0.8 # opencv default setting | |
if ksize % 2 == 0: | |
kernel = cv2.getGaussianKernel(ksize=ksize+1, sigma=sigma, ktype=cv2.CV_64F) | |
kernel = kernel[1:, ] | |
else: | |
kernel = cv2.getGaussianKernel(ksize=ksize, sigma=sigma, ktype=cv2.CV_64F) | |
return kernel | |
def get_weight(self, height, width): | |
if self.weight_type == 'ones': | |
kernel = torch.ones(1, 1, height, width) | |
elif self.weight_type == 'Gaussian': | |
kernel_h = self.generate_kernel_1d(height).reshape(-1, 1) | |
kernel_w = self.generate_kernel_1d(width).reshape(1, -1) | |
kernel = np.matmul(kernel_h, kernel_w) | |
kernel = torch.from_numpy(kernel).unsqueeze(0).unsqueeze(0) # 1 x 1 x pch_size x pch_size | |
else: | |
raise ValueError(f"Unsupported weight type: {self.weight_type}") | |
return kernel.to(dtype=self.dtype, device=self.im_ori.device) | |
def gather(self): | |
assert torch.all(self.pixel_count != 0) | |
return self.im_res.div(self.pixel_count) | |
# ----------------------Patch Cliping---------------------------- | |
class Clamper: | |
def __init__(self, min_max=(-1, 1)): | |
self.min_bound, self.max_bound = min_max[0], min_max[1] | |
def __call__(self, im): | |
if isinstance(im, np.ndarray): | |
return np.clip(im, a_min=self.min_bound, a_max=self.max_bound) | |
elif isinstance(im, torch.Tensor): | |
return torch.clamp(im, min=self.min_bound, max=self.max_bound) | |
else: | |
raise TypeError(f'ndarray or Tensor expected, got {type(im)}') | |
# ----------------------Interpolation---------------------------- | |
class Bicubic: | |
def __init__(self, scale=None, out_shape=None, activate_matlab=True, resize_back=False): | |
self.scale = scale | |
self.activate_matlab = activate_matlab | |
self.out_shape = out_shape | |
self.resize_back = resize_back | |
def __call__(self, im): | |
if self.activate_matlab: | |
out = imresize_np(im, scale=self.scale) | |
if self.resize_back: | |
out = imresize_np(out, scale=1/self.scale) | |
else: | |
out = cv2.resize( | |
im, | |
dsize=self.out_shape, | |
fx=self.scale, | |
fy=self.scale, | |
interpolation=cv2.INTER_CUBIC, | |
) | |
if self.resize_back: | |
out = cv2.resize( | |
out, | |
dsize=self.out_shape, | |
fx=1/self.scale, | |
fy=1/self.scale, | |
interpolation=cv2.INTER_CUBIC, | |
) | |
return out | |
class SmallestMaxSize: | |
def __init__(self, max_size, pass_resize=False, interpolation=None): | |
self.pass_resize = pass_resize | |
self.max_size = max_size | |
self.interpolation = interpolation | |
self.str2mode = { | |
'nearest': cv2.INTER_NEAREST_EXACT, | |
'bilinear': cv2.INTER_LINEAR, | |
'bicubic': cv2.INTER_CUBIC | |
} | |
if self.interpolation is not None: | |
assert interpolation in self.str2mode, f"Not supported interpolation mode: {interpolation}" | |
def get_interpolation(self, size): | |
if self.interpolation is None: | |
if size < self.max_size: # upsampling | |
interpolation = cv2.INTER_CUBIC | |
else: # downsampling | |
interpolation = cv2.INTER_AREA | |
else: | |
interpolation = self.str2mode[self.interpolation] | |
return interpolation | |
def __call__(self, im): | |
h, w = im.shape[:2] | |
if self.pass_resize or min(h, w) == self.max_size: | |
out = im | |
else: | |
if h < w: | |
dsize = (int(self.max_size * w / h), self.max_size) | |
out = cv2.resize(im, dsize=dsize, interpolation=self.get_interpolation(h)) | |
else: | |
dsize = (self.max_size, int(self.max_size * h / w)) | |
out = cv2.resize(im, dsize=dsize, interpolation=self.get_interpolation(w)) | |
if out.dtype == np.uint8: | |
out = np.clip(out, 0, 255) | |
else: | |
out = np.clip(out, 0, 1.0) | |
return out | |
# ----------------------augmentation---------------------------- | |
class SpatialAug: | |
def __init__(self, pass_aug, only_hflip=False, only_vflip=False, only_hvflip=False): | |
self.only_hflip = only_hflip | |
self.only_vflip = only_vflip | |
self.only_hvflip = only_hvflip | |
self.pass_aug = pass_aug | |
def __call__(self, im, flag=None): | |
if self.pass_aug: | |
return im | |
if flag is None: | |
if self.only_hflip: | |
flag = random.choice([0, 5]) | |
elif self.only_vflip: | |
flag = random.choice([0, 1]) | |
elif self.only_hvflip: | |
flag = random.choice([0, 1, 5]) | |
else: | |
flag = random.randint(0, 7) | |
if isinstance(im, list) or isinstance(im, tuple): | |
out = [] | |
for current_im in im: | |
out.append(data_aug_np(current_im, flag)) | |
else: | |
out = data_aug_np(im, flag) | |
return out | |
if __name__ == '__main__': | |
im = np.random.randn(64, 64, 3).astype(np.float32) | |
grad1 = imgrad(im)['grad'] | |
grad2 = imgrad_fft(im)['grad'] | |
error = np.abs(grad1 -grad2).max() | |
mean_error = np.abs(grad1 -grad2).mean() | |
print('The largest error is {:.2e}'.format(error)) | |
print('The mean error is {:.2e}'.format(mean_error)) | |