File size: 8,946 Bytes
2c7b92a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import math
import torch
import torch.nn as nn
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present

URLS = {
    "hubert-discrete": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-discrete-d49e1c77.pt",
    "hubert-soft": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-soft-0321fd7e.pt",
}

class CustomLSTM(nn.Module):
    def __init__(self, input_sz, hidden_sz):
        super().__init__()
        self.input_sz = input_sz
        self.hidden_size = hidden_sz
        self.W = nn.Parameter(torch.Tensor(input_sz, hidden_sz * 4))
        self.U = nn.Parameter(torch.Tensor(hidden_sz, hidden_sz * 4))
        self.bias = nn.Parameter(torch.Tensor(hidden_sz * 4))
        self.init_weights()

    def init_weights(self):
        stdv = 1.0 / math.sqrt(self.hidden_size)
        for weight in self.parameters():
            weight.data.uniform_(-stdv, stdv)

    def forward(self, x,
                init_states=None):
        """Assumes x is of shape (batch, sequence, feature)"""
        #print(type(x))
        #print(x.shape)
        bs, seq_sz, _ = x.size()
        hidden_seq = []
        if init_states is None:
            h_t, c_t = (torch.zeros(bs, self.hidden_size).to(x.device),
                        torch.zeros(bs, self.hidden_size).to(x.device))
        else:
            h_t, c_t = init_states

        HS = self.hidden_size
        for t in range(seq_sz):
            x_t = x[:, t, :]
            # batch the computations into a single matrix multiplication
            gates = x_t @ self.W + h_t @ self.U + self.bias
            i_t, f_t, g_t, o_t = (
                torch.sigmoid(gates[:, :HS]), # input
                torch.sigmoid(gates[:, HS:HS*2]), # forget
                torch.tanh(gates[:, HS*2:HS*3]),
                torch.sigmoid(gates[:, HS*3:]), # output
            )
            c_t = f_t * c_t + i_t * g_t
            h_t = o_t * torch.tanh(c_t)
            hidden_seq.append(h_t.unsqueeze(0))
        hidden_seq = torch.cat(hidden_seq, dim=0)
        # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
        hidden_seq = hidden_seq.transpose(0, 1).contiguous()
        return hidden_seq, (h_t, c_t)

class AcousticModel(nn.Module):
    def __init__(self, discrete: bool = False, upsample: bool = True, use_custom_lstm=False):
        super().__init__()
        # self.spk_projection = nn.Linear(512+512, 512)
        self.encoder = Encoder(discrete, upsample)
        self.decoder = Decoder(use_custom_lstm=use_custom_lstm)

    def forward(self, x: torch.Tensor, spk_embs, mels: torch.Tensor) -> torch.Tensor:
        x = self.encoder(x)
        exp_spk_embs = spk_embs.unsqueeze(1).expand(-1, x.size(1), -1)
        concat_x = torch.cat([x, exp_spk_embs], dim=-1)
        # x = self.spk_projection(concat_x)
        return self.decoder(concat_x, mels)

    #def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor:
    #    x = self.encoder(x)
    #    return self.decoder(x, mels)

    def forward_test(self, x, spk_embs, mels):
      print('x shape', x.shape)
      print('se shape', spk_embs.shape)
      print('mels shape', mels.shape)
      x = self.encoder(x)
      print('x_enc shape', x.shape)
      return

    @torch.inference_mode()
    def generate(self, x: torch.Tensor, spk_embs) -> torch.Tensor:
        x = self.encoder(x)
        exp_spk_embs = spk_embs.unsqueeze(1).expand(-1, x.size(1), -1)
        concat_x = torch.cat([x, exp_spk_embs], dim=-1)
        # x = self.spk_projection(concat_x)
        return self.decoder.generate(concat_x)


class Encoder(nn.Module):
    def __init__(self, discrete: bool = False, upsample: bool = True):
        super().__init__()
        self.embedding = nn.Embedding(100 + 1, 256) if discrete else None
        self.prenet = PreNet(256, 256, 256)
        self.convs = nn.Sequential(
            nn.Conv1d(256, 512, 5, 1, 2),
            nn.ReLU(),
            nn.InstanceNorm1d(512),
            nn.ConvTranspose1d(512, 512, 4, 2, 1) if upsample else nn.Identity(),
            nn.Conv1d(512, 512, 5, 1, 2),
            nn.ReLU(),
            nn.InstanceNorm1d(512),
            nn.Conv1d(512, 512, 5, 1, 2),
            nn.ReLU(),
            nn.InstanceNorm1d(512),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.embedding is not None:
            x = self.embedding(x)
        x = self.prenet(x)
        x = self.convs(x.transpose(1, 2))
        return x.transpose(1, 2)


class Decoder(nn.Module):
    def __init__(self, use_custom_lstm=False):
        super().__init__()
        self.use_custom_lstm = use_custom_lstm
        self.prenet = PreNet(128, 256, 256)
        self.prenet = PreNet(128, 256, 256)
        if use_custom_lstm:
          self.lstm1 = CustomLSTM(1024 + 256, 768)
          self.lstm2 = CustomLSTM(768, 768)
          self.lstm3 = CustomLSTM(768, 768)
        else:
          self.lstm1 = nn.LSTM(1024 + 256, 768)
          self.lstm2 = nn.LSTM(768, 768)
          self.lstm3 = nn.LSTM(768, 768)
        self.proj = nn.Linear(768, 128, bias=False)

    def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor:
        mels = self.prenet(mels)
        x, _ = self.lstm1(torch.cat((x, mels), dim=-1))
        res = x
        x, _ = self.lstm2(x)
        x = res + x
        res = x
        x, _ = self.lstm3(x)
        x = res + x
        return self.proj(x)

    @torch.inference_mode()
    def generate(self, xs: torch.Tensor) -> torch.Tensor:
        m = torch.zeros(xs.size(0), 128, device=xs.device)
        if not self.use_custom_lstm:
          h1 = torch.zeros(1, xs.size(0), 768, device=xs.device)
          c1 = torch.zeros(1, xs.size(0), 768, device=xs.device)
          h2 = torch.zeros(1, xs.size(0), 768, device=xs.device)
          c2 = torch.zeros(1, xs.size(0), 768, device=xs.device)
          h3 = torch.zeros(1, xs.size(0), 768, device=xs.device)
          c3 = torch.zeros(1, xs.size(0), 768, device=xs.device)
        else:
          h1 = torch.zeros(xs.size(0), 768, device=xs.device)
          c1 = torch.zeros(xs.size(0), 768, device=xs.device)
          h2 = torch.zeros(xs.size(0), 768, device=xs.device)
          c2 = torch.zeros(xs.size(0), 768, device=xs.device)
          h3 = torch.zeros(xs.size(0), 768, device=xs.device)
          c3 = torch.zeros(xs.size(0), 768, device=xs.device)

        mel = []
        for x in torch.unbind(xs, dim=1):
            m = self.prenet(m)
            x = torch.cat((x, m), dim=1).unsqueeze(1)
            x1, (h1, c1) = self.lstm1(x, (h1, c1))
            x2, (h2, c2) = self.lstm2(x1, (h2, c2))
            x = x1 + x2
            x3, (h3, c3) = self.lstm3(x, (h3, c3))
            x = x + x3
            m = self.proj(x).squeeze(1)
            mel.append(m)
        return torch.stack(mel, dim=1)


class PreNet(nn.Module):
    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        output_size: int,
        dropout: float = 0.5,
    ):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_size, output_size),
            nn.ReLU(),
            nn.Dropout(dropout),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.net(x)


def _acoustic(
    name: str,
    discrete: bool,
    upsample: bool,
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    acoustic = AcousticModel(discrete, upsample)
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(URLS[name], progress=progress)
        consume_prefix_in_state_dict_if_present(checkpoint["acoustic-model"], "module.")
        acoustic.load_state_dict(checkpoint["acoustic-model"])
        acoustic.eval()
    return acoustic


def hubert_discrete(
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    r"""HuBERT-Discrete acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
    Args:
        pretrained (bool): load pretrained weights into the model
        progress (bool): show progress bar when downloading model
    """
    return _acoustic(
        "hubert-discrete",
        discrete=True,
        upsample=True,
        pretrained=pretrained,
        progress=progress,
    )


def hubert_soft(
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    r"""HuBERT-Soft acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
    Args:
        pretrained (bool): load pretrained weights into the model
        progress (bool): show progress bar when downloading model
    """
    return _acoustic(
        "hubert-soft",
        discrete=False,
        upsample=True,
        pretrained=pretrained,
        progress=progress,
    )