Spaces:
Sleeping
Sleeping
model and comments
Browse files1. modified model # Load BART model & tokenizer
2. added comments to the code
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import PyPDF2
|
@@ -6,14 +8,18 @@ import numpy
|
|
6 |
import scipy
|
7 |
from gtts import gTTS
|
8 |
from io import BytesIO
|
9 |
-
from transformers import
|
10 |
|
|
|
|
|
11 |
def extract_text(pdf_file):
|
12 |
pdfReader = PyPDF2.PdfReader(pdf_file)
|
13 |
pageObj = pdfReader.pages[0]
|
14 |
return pageObj.extract_text()
|
15 |
|
16 |
-
|
|
|
|
|
17 |
def summarize_text(text):
|
18 |
sentences = text.split(". ")
|
19 |
for i, sentence in enumerate(sentences):
|
@@ -23,12 +29,26 @@ def summarize_text(text):
|
|
23 |
break
|
24 |
abstract = ". ".join(sentences[start:end+1])
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
32 |
def text_to_audio(text):
|
33 |
tts = gTTS(text, lang='en')
|
34 |
buffer = BytesIO()
|
@@ -36,12 +56,18 @@ def text_to_audio(text):
|
|
36 |
buffer.seek(0)
|
37 |
return buffer.read()
|
38 |
|
|
|
|
|
|
|
39 |
def audio_pdf(pdf_file):
|
40 |
text = extract_text(pdf_file)
|
41 |
summary = summarize_text(text)
|
42 |
audio = text_to_audio(summary)
|
43 |
return summary, audio
|
44 |
|
|
|
|
|
|
|
45 |
inputs = gr.File()
|
46 |
summary_text = gr.Text()
|
47 |
audio_summary = gr.Audio()
|
@@ -59,4 +85,4 @@ iface = gr.Interface(
|
|
59 |
]
|
60 |
)
|
61 |
|
62 |
-
iface.launch()
|
|
|
1 |
+
# Import libraries
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import PyPDF2
|
|
|
8 |
import scipy
|
9 |
from gtts import gTTS
|
10 |
from io import BytesIO
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
|
13 |
+
# Function to extract text from PDF
|
14 |
+
# Defines a function to extract raw text from a PDF file
|
15 |
def extract_text(pdf_file):
|
16 |
pdfReader = PyPDF2.PdfReader(pdf_file)
|
17 |
pageObj = pdfReader.pages[0]
|
18 |
return pageObj.extract_text()
|
19 |
|
20 |
+
|
21 |
+
# Function to summarize text
|
22 |
+
# Defines a function to summarize the extracted text using facebook/bart-large-cnn
|
23 |
def summarize_text(text):
|
24 |
sentences = text.split(". ")
|
25 |
for i, sentence in enumerate(sentences):
|
|
|
29 |
break
|
30 |
abstract = ". ".join(sentences[start:end+1])
|
31 |
|
32 |
+
# Load BART model & tokenizer
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
34 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
35 |
+
|
36 |
+
# Tokenize abstract
|
37 |
+
inputs = tokenizer(abstract, return_tensors="pt", truncation=True)
|
38 |
+
|
39 |
+
# Generate summary
|
40 |
+
summary_ids = model.generate(inputs['input_ids'],
|
41 |
+
num_beams=3,
|
42 |
+
max_length=50,
|
43 |
+
min_length=30,
|
44 |
+
do_sample=False,
|
45 |
+
early_stopping=True)
|
46 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
return summary
|
49 |
|
50 |
+
# Function to convert text to audio
|
51 |
+
# Defines a function to convert text to an audio file using Google Text-to-Speech
|
52 |
def text_to_audio(text):
|
53 |
tts = gTTS(text, lang='en')
|
54 |
buffer = BytesIO()
|
|
|
56 |
buffer.seek(0)
|
57 |
return buffer.read()
|
58 |
|
59 |
+
### Main function
|
60 |
+
### The main function that ties everything together:
|
61 |
+
### extracts text, summarizes, and converts to audio.
|
62 |
def audio_pdf(pdf_file):
|
63 |
text = extract_text(pdf_file)
|
64 |
summary = summarize_text(text)
|
65 |
audio = text_to_audio(summary)
|
66 |
return summary, audio
|
67 |
|
68 |
+
# Define Gradio interface
|
69 |
+
# Gradio web interface with a file input, text output to display the summary
|
70 |
+
# and audio output to play the audio file. # Launches the interface
|
71 |
inputs = gr.File()
|
72 |
summary_text = gr.Text()
|
73 |
audio_summary = gr.Audio()
|
|
|
85 |
]
|
86 |
)
|
87 |
|
88 |
+
iface.launch() # Launch the interface
|