File size: 7,176 Bytes
7f46a81
 
 
0185164
34cb05b
7f46a81
 
9c7980f
34cb05b
9c7980f
0185164
 
43add8c
 
7f46a81
d4f485b
0185164
34cb05b
 
 
 
 
 
 
 
 
 
 
d4f485b
0fc680c
 
0345552
0fc680c
adf3dc3
7f46a81
0185164
43add8c
0185164
 
 
 
1dac99b
34cb05b
1dac99b
6a0cffd
 
34cb05b
6a0cffd
d4f485b
9c7980f
 
 
 
 
 
 
ff5741f
d4f485b
0aa3b05
d4f485b
0aa3b05
d4f485b
0aa3b05
 
4b2fddf
0fc680c
c72a9f3
34cb05b
 
0aa3b05
 
0da2f50
34cb05b
 
ff5741f
 
d4f485b
 
673067b
0aa3b05
1dac99b
7f46a81
 
 
 
 
d4f485b
 
43add8c
34cb05b
 
 
 
0185164
34cb05b
7f46a81
0185164
 
 
 
 
 
 
7f46a81
 
 
 
347c81e
43add8c
7f46a81
d4f485b
7f46a81
d26ed68
0185164
d4f485b
 
 
43add8c
d4f485b
ff5741f
 
 
 
 
 
7f46a81
ff5741f
0da2f50
 
 
 
 
43add8c
 
1dac99b
ff5741f
 
1dac99b
 
43add8c
6a0cffd
0185164
 
6a0cffd
 
 
 
0185164
 
43add8c
0fc680c
34cb05b
 
0185164
 
 
 
 
 
ff5741f
34cb05b
 
 
0185164
 
 
 
1dac99b
7f46a81
d4f485b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex

from dotenv import load_dotenv
load_dotenv(override=True)

max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
             'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
             'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
             'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())


if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'πŸ€–'}]
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True


    def generate_response(question):
        response = vq.submit_query(question, languages[st.session_state.language])
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question, languages[st.session_state.language])
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        corpus_keys = str(os.environ['corpus_keys']).split(',')
        cfg = OmegaConf.create({
            'corpus_keys': corpus_keys,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', None),
            'language': 'English'
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.language = cfg.language
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n")
        
        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.language = cfg.language
            reset()
            st.rerun()

        st.markdown("\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )       

    st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        reset()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar="πŸ€–"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt)
                response = st.write_stream(stream)
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)

            response = escape_dollars_outside_latex(response)
            message = {"role": "assistant", "content": response, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)

            # Send query and response to Amplitude Analytics
            send_amplitude_data(
                user_query=st.session_state.messages[-2]["content"],
                chat_response=st.session_state.messages[-1]["content"],
                demo_name=cfg["title"],
                language=st.session_state.language
            )
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"user_query": st.session_state.messages[-2]["content"],
                                                "chat_response": st.session_state.messages[-1]["content"],
                                                "demo_name": cfg["title"],
                                                "response_language": st.session_state.language})
    
if __name__ == "__main__":
    launch_bot()