Spaces:
Runtime error
Runtime error
File size: 28,370 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
import torch
import os
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .modeling_pyramid_mmdit import PyramidDiffusionMMDiT
from .modeling_text_encoder import SD3TextEncoderWithMask
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
class PyramidDiTForVideoGeneration:
"""
The pyramid dit for both image and video generation, The running class wrapper
This class is mainly for fixed unit implementation: 1 + n + n + n
"""
def __init__(self, model_path, model_dtype='bf16', use_gradient_checkpointing=False, return_log=True,
model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
if use_mixed_training:
print("using mixed precision training, do not explicitly casting models")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
print("using half precision")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, torch_dtype=torch_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
# The text encoder
if load_text_encoder:
self.text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
self.text_encoder = None
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
# For the image latent
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
@torch.no_grad()
def get_pyramid_latent(self, x, stage_num):
# x is the origin vae latent
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions, # List of past conditions, contains the conditions of each stage
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
# Fix the stage
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise # To fix the block artifact
for idx, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
@torch.no_grad()
def generate_i2v(
self,
prompt: Union[str, List[str]] = '',
input_image: PIL.Image = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 4.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
):
device = self.device
dtype = self.dtype
width = input_image.width
height = input_image.height
assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# Create the initial random noise
num_channels_latents = self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = temp // self.frame_per_unit
stages = self.stages
# encode the image latents
image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w]
input_image_latent = (self.vae.encode(input_image_tensor.to(device)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w]
generated_latents_list = [input_image_latent] # The generated results
last_generated_latents = input_image_latent
for unit_index in tqdm(range(1, num_units + 1)):
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
image = self.decode_latent(generated_latents, save_memory=save_memory)
return image
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 7.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
):
device = self.device
dtype = self.dtype
assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
if isinstance(video_num_inference_steps, int):
video_num_inference_steps = [video_num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if use_linear_guidance:
max_guidance_scale = guidance_scale
# guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist()
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# Create the initial random noise
num_channels_latents = self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = 1 + (temp - 1) // self.frame_per_unit
stages = self.stages
generated_latents_list = [] # The generated results
last_generated_latents = None
for unit_index in tqdm(range(num_units)):
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
if unit_index == 0:
past_condition_latents = [[] for _ in range(len(stages))]
intermed_latents = self.generate_one_unit(
latents[:,:,:1],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
1,
device,
dtype,
generator,
is_first_frame=True,
)
else:
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
video_num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
image = self.decode_latent(generated_latents, save_memory=save_memory)
return image
def decode_latent(self, latents, save_memory=True):
if latents.shape[2] == 1:
latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
else:
latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor
if save_memory:
# reducing the tile size and temporal chunk window size
image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=256).sample
else:
image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample
image = image.float()
image = (image / 2 + 0.5).clamp(0, 1)
image = rearrange(image, "B C T H W -> (B T) C H W")
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@property
def device(self):
return next(self.dit.parameters()).device
@property
def dtype(self):
return next(self.dit.parameters()).dtype
@property
def guidance_scale(self):
return self._guidance_scale
@property
def video_guidance_scale(self):
return self._video_guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 0
|