File size: 10,493 Bytes
98c5805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from __future__ import division
import os, glob, shutil, math, random, json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import basic
from utils import util
eps = 0.0000001
class SPixelLoss:
def __init__(self, psize=8, mpdist=False, gpu_no=0):
self.mpdist = mpdist
self.gpu_no = gpu_no
self.sp_size = psize
def __call__(self, data, epoch_no):
kernel_size = self.sp_size
#pos_weight = 0.003
prob = data['pred_prob']
labxy_feat = data['target_feat']
N,C,H,W = labxy_feat.shape
pooled_labxy = basic.poolfeat(labxy_feat, prob, kernel_size, kernel_size)
reconstr_feat = basic.upfeat(pooled_labxy, prob, kernel_size, kernel_size)
loss_map = reconstr_feat[:,:,:,:] - labxy_feat[:,:,:,:]
featLoss_idx = torch.norm(loss_map[:,:-2,:,:], p=2, dim=1).mean()
posLoss_idx = torch.norm(loss_map[:,-2:,:,:], p=2, dim=1).mean() / kernel_size
totalLoss_idx = 10*featLoss_idx + 0.003*posLoss_idx
return {'totalLoss':totalLoss_idx, 'featLoss':featLoss_idx, 'posLoss':posLoss_idx}
class AnchorColorProbLoss:
def __init__(self, hint2regress=False, enhanced=False, with_grad=False, mpdist=False, gpu_no=0):
self.mpdist = mpdist
self.gpu_no = gpu_no
self.hint2regress = hint2regress
self.enhanced = enhanced
self.with_grad = with_grad
self.rebalance_gradient = basic.RebalanceLoss.apply
self.entropy_loss = nn.CrossEntropyLoss(ignore_index=-1)
if self.enhanced:
self.VGGLoss = VGG19Loss(gpu_no=gpu_no, is_ddp=mpdist)
def _perceptual_loss(self, input_grays, input_colors, pred_colors):
input_RGBs = basic.lab2rgb(torch.cat([input_grays,input_colors], dim=1))
pred_RGBs = basic.lab2rgb(torch.cat([input_grays,pred_colors], dim=1))
## the output of "lab2rgb" just matches the input of "VGGLoss": [0,1]
return self.VGGLoss(input_RGBs, pred_RGBs)
def _laplace_gradient(self, pred_AB, target_AB):
N,C,H,W = pred_AB.shape
kernel = torch.tensor([[1, 1, 1], [1, -8, 1], [1, 1, 1]], device=pred_AB.get_device()).float()
kernel = kernel.view(1, 1, *kernel.size()).repeat(C,1,1,1)
grad_pred = F.conv2d(pred_AB, kernel, groups=C)
grad_trg = F.conv2d(target_AB, kernel, groups=C)
return l1_loss(grad_trg, grad_pred)
def __call__(self, data, epoch_no):
N,C,H,W = data['target_label'].shape
pal_probs = self.rebalance_gradient(data['pal_prob'], data['class_weight'])
#ref_probs = data['ref_prob']
pal_probs = pal_probs.permute(0,2,3,1).contiguous().view(N*H*W, -1)
gt_labels = data['target_label'].permute(0,2,3,1).contiguous().view(N*H*W, -1)
'''
igored_mask = data['empty_entries'].permute(0,2,3,1).contiguous().view(N*H*W, -1)
gt_labels[igored_mask] = -1
gt_labels = gt_probs.squeeze()
'''
palLoss_idx = self.entropy_loss(pal_probs, gt_labels.squeeze(dim=1))
if self.hint2regress:
ref_probs = data['ref_prob']
refLoss_idx = 50 * l2_loss(data['spix_color'], ref_probs)
else:
ref_probs = self.rebalance_gradient(data['ref_prob'], data['class_weight'])
ref_probs = ref_probs.permute(0,2,3,1).contiguous().view(N*H*W, -1)
refLoss_idx = self.entropy_loss(ref_probs, gt_labels.squeeze(dim=1))
reconLoss_idx = torch.zeros_like(palLoss_idx)
if self.enhanced:
scalar = 1.0 if self.hint2regress else 5.0
reconLoss_idx = scalar * self._perceptual_loss(data['input_gray'], data['pred_color'], data['input_color'])
if self.with_grad:
gradient_loss = self._laplace_gradient(data['pred_color'], data['input_color'])
reconLoss_idx += gradient_loss
totalLoss_idx = palLoss_idx + refLoss_idx + reconLoss_idx
#print("loss terms:", palLoss_idx.item(), refLoss_idx.item(), reconLoss_idx.item())
return {'totalLoss':totalLoss_idx, 'palLoss':palLoss_idx, 'refLoss':refLoss_idx, 'recLoss':reconLoss_idx}
def compute_affinity_pos_loss(prob_in, labxy_feat, pos_weight=0.003, kernel_size=16):
S = kernel_size
m = pos_weight
prob = prob_in.clone()
N,C,H,W = labxy_feat.shape
pooled_labxy = basic.poolfeat(labxy_feat, prob, kernel_size, kernel_size)
reconstr_feat = basic.upfeat(pooled_labxy, prob, kernel_size, kernel_size)
loss_map = reconstr_feat[:,:,:,:] - labxy_feat[:,:,:,:]
loss_feat = torch.norm(loss_map[:,:-2,:,:], p=2, dim=1).mean()
loss_pos = torch.norm(loss_map[:,-2:,:,:], p=2, dim=1).mean() * m / S
loss_affinity = loss_feat + loss_pos
return loss_affinity
def l2_loss(y_input, y_target, weight_map=None):
if weight_map is None:
return F.mse_loss(y_input, y_target)
else:
diff_map = torch.mean(torch.abs(y_input-y_target), dim=1, keepdim=True)
batch_dev = torch.sum(diff_map*diff_map*weight_map, dim=(1,2,3)) / (eps+torch.sum(weight_map, dim=(1,2,3)))
return batch_dev.mean()
def l1_loss(y_input, y_target, weight_map=None):
if weight_map is None:
return F.l1_loss(y_input, y_target)
else:
diff_map = torch.mean(torch.abs(y_input-y_target), dim=1, keepdim=True)
batch_dev = torch.sum(diff_map*weight_map, dim=(1,2,3)) / (eps+torch.sum(weight_map, dim=(1,2,3)))
return batch_dev.mean()
def masked_l1_loss(y_input, y_target, outlier_mask):
one = torch.tensor([1.0]).cuda(y_input.get_device())
weight_map = torch.where(outlier_mask, one * 0.0, one * 1.0)
return l1_loss(y_input, y_target, weight_map)
def huber_loss(y_input, y_target, delta=0.01):
mask = torch.zeros_like(y_input)
mann = torch.abs(y_input - y_target)
eucl = 0.5 * (mann**2)
mask[...] = mann < delta
loss = eucl * mask / delta + (mann - 0.5 * delta) * (1 - mask)
return torch.mean(loss)
## Perceptual loss that uses a pretrained VGG network
class VGG19Loss(nn.Module):
def __init__(self, feat_type='liu', gpu_no=0, is_ddp=False, requires_grad=False):
super(VGG19Loss, self).__init__()
os.environ['TORCH_HOME'] = '/apdcephfs/share_1290939/richardxia/Saved/Checkpoints/VGG19'
## data requirement: (N,C,H,W) in RGB format, [0,1] range, and resolution >= 224x224
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
self.feat_type = feat_type
vgg_model = torchvision.models.vgg19(pretrained=True)
## AssertionError: DistributedDataParallel is not needed when a module doesn't have any parameter that requires a gradient
'''
if is_ddp:
vgg_model = vgg_model.cuda(gpu_no)
vgg_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(vgg_model)
vgg_model = torch.nn.parallel.DistributedDataParallel(vgg_model, device_ids=[gpu_no], find_unused_parameters=True)
else:
vgg_model = vgg_model.cuda(gpu_no)
'''
vgg_model = vgg_model.cuda(gpu_no)
if self.feat_type == 'liu':
## conv1_1, conv2_1, conv3_1, conv4_1, conv5_1
self.slice1 = nn.Sequential(*list(vgg_model.features)[:2]).eval()
self.slice2 = nn.Sequential(*list(vgg_model.features)[2:7]).eval()
self.slice3 = nn.Sequential(*list(vgg_model.features)[7:12]).eval()
self.slice4 = nn.Sequential(*list(vgg_model.features)[12:21]).eval()
self.slice5 = nn.Sequential(*list(vgg_model.features)[21:30]).eval()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
elif self.feat_type == 'lei':
## conv1_2, conv2_2, conv3_2, conv4_2, conv5_2
self.slice1 = nn.Sequential(*list(vgg_model.features)[:4]).eval()
self.slice2 = nn.Sequential(*list(vgg_model.features)[4:9]).eval()
self.slice3 = nn.Sequential(*list(vgg_model.features)[9:14]).eval()
self.slice4 = nn.Sequential(*list(vgg_model.features)[14:23]).eval()
self.slice5 = nn.Sequential(*list(vgg_model.features)[23:32]).eval()
self.weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10.0/1.5]
else:
## maxpool after conv4_4
self.featureExactor = nn.Sequential(*list(vgg_model.features)[:28]).eval()
'''
for x in range(2):
self.slice1.add_module(str(x), pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), pretrained_features[x])
'''
self.criterion = nn.L1Loss()
## fixed parameters
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
self.eval()
print('[*] VGG19Loss init!')
def normalize(self, tensor):
tensor = tensor.clone()
mean = torch.as_tensor(self.mean, dtype=torch.float32, device=tensor.device)
std = torch.as_tensor(self.std, dtype=torch.float32, device=tensor.device)
tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
return tensor
def forward(self, x, y):
norm_x, norm_y = self.normalize(x), self.normalize(y)
## feature extract
if self.feat_type == 'liu' or self.feat_type == 'lei':
x_relu1, y_relu1 = self.slice1(norm_x), self.slice1(norm_y)
x_relu2, y_relu2 = self.slice2(x_relu1), self.slice2(y_relu1)
x_relu3, y_relu3 = self.slice3(x_relu2), self.slice3(y_relu2)
x_relu4, y_relu4 = self.slice4(x_relu3), self.slice4(y_relu3)
x_relu5, y_relu5 = self.slice5(x_relu4), self.slice5(y_relu4)
x_vgg = [x_relu1, x_relu2, x_relu3, x_relu4, x_relu5]
y_vgg = [y_relu1, y_relu2, y_relu3, y_relu4, y_relu5]
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
else:
x_vgg, y_vgg = self.featureExactor(norm_x), self.featureExactor(norm_y)
loss = self.criterion(x_vgg, y_vgg.detach())
return loss |