File size: 8,586 Bytes
98c5805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
import torch.nn.functional as F
from torch import nn
import copy, math
from models.position_encoding import build_position_encoding
class TransformerEncoder(nn.Module):
def __init__(self, enc_layer, num_layers, use_dense_pos=False):
super().__init__()
self.layers = nn.ModuleList([copy.deepcopy(enc_layer) for i in range(num_layers)])
self.num_layers = num_layers
self.use_dense_pos = use_dense_pos
def forward(self, src, pos, padding_mask=None):
if self.use_dense_pos:
## pos encoding at each MH-Attention block (q,k)
output, pos_enc = src, pos
for layer in self.layers:
output, att_map = layer(output, pos_enc, padding_mask)
else:
## pos encoding at input only (q,k,v)
output, pos_enc = src + pos, None
for layer in self.layers:
output, att_map = layer(output, pos_enc, padding_mask)
return output, att_map
class EncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
use_dense_pos=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward(self, src, pos, padding_mask):
q = k = self.with_pos_embed(src, pos)
src2, attn = self.self_attn(q, k, value=src, key_padding_mask=padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src, attn
class TransformerDecoder(nn.Module):
def __init__(self, dec_layer, num_layers, use_dense_pos=False, return_intermediate=False):
super().__init__()
self.layers = nn.ModuleList([copy.deepcopy(dec_layer) for i in range(num_layers)])
self.num_layers = num_layers
self.use_dense_pos = use_dense_pos
self.return_intermediate = return_intermediate
def forward(self, tgt, tgt_pos, memory, memory_pos,
tgt_padding_mask, src_padding_mask, tgt_attn_mask=None):
intermediate = []
if self.use_dense_pos:
## pos encoding at each MH-Attention block (q,k)
output = tgt
tgt_pos_enc, memory_pos_enc = tgt_pos, memory_pos
for layer in self.layers:
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
if self.return_intermediate:
intermediate.append(output)
else:
## pos encoding at input only (q,k,v)
output = tgt + tgt_pos
tgt_pos_enc, memory_pos_enc = None, None
for layer in self.layers:
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
if self.return_intermediate:
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output, att_map
class DecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
use_dense_pos=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.corr_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward(self, tgt, tgt_pos, memory, memory_pos,
tgt_padding_mask, memory_padding_mask, tgt_attn_mask):
q = k = self.with_pos_embed(tgt, tgt_pos)
tgt2, attn = self.self_attn(q, k, value=tgt, key_padding_mask=tgt_padding_mask,
attn_mask=tgt_attn_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2, attn = self.corr_attn(query=self.with_pos_embed(tgt, tgt_pos),
key=self.with_pos_embed(memory, memory_pos),
value=memory, key_padding_mask=memory_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt, attn
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
#-----------------------------------------------------------------------------------
'''
copy from the implementatoin of "attention-is-all-you-need-pytorch-master" by Yu-Hsiang Huang
'''
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
q = self.dropout(self.fc(q))
q += residual
q = self.layer_norm(q)
return q, attn
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn |