|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import init |
|
import torchvision |
|
import torch.nn.utils.spectral_norm as spectral_norm |
|
import math |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, inChannels, outChannels, convNum, normLayer=None): |
|
super(ConvBlock, self).__init__() |
|
self.inConv = nn.Sequential( |
|
nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True) |
|
) |
|
layers = [] |
|
for _ in range(convNum - 1): |
|
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
if not (normLayer is None): |
|
layers.append(normLayer(outChannels)) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.inConv(x) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, channels, normLayer=None): |
|
super(ResidualBlock, self).__init__() |
|
layers = [] |
|
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1)) |
|
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) |
|
if not (normLayer is None): |
|
layers.append(normLayer(channels)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1)) |
|
if not (normLayer is None): |
|
layers.append(normLayer(channels)) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
residual = self.conv(x) |
|
return F.relu(x + residual, inplace=True) |
|
|
|
|
|
class ResidualBlockSN(nn.Module): |
|
def __init__(self, channels, normLayer=None): |
|
super(ResidualBlockSN, self).__init__() |
|
layers = [] |
|
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) |
|
layers.append(nn.LeakyReLU(0.2, True)) |
|
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) |
|
if not (normLayer is None): |
|
layers.append(normLayer(channels)) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
residual = self.conv(x) |
|
return F.leaky_relu(x + residual, 2e-1, inplace=True) |
|
|
|
|
|
class DownsampleBlock(nn.Module): |
|
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): |
|
super(DownsampleBlock, self).__init__() |
|
layers = [] |
|
layers.append(nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=2)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
for _ in range(convNum - 1): |
|
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
if not (normLayer is None): |
|
layers.append(normLayer(outChannels)) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class UpsampleBlock(nn.Module): |
|
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): |
|
super(UpsampleBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=1) |
|
self.combine = nn.Conv2d(2 * outChannels, outChannels, kernel_size=3, padding=1) |
|
layers = [] |
|
for _ in range(convNum - 1): |
|
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
if not (normLayer is None): |
|
layers.append(normLayer(outChannels)) |
|
self.conv2 = nn.Sequential(*layers) |
|
|
|
def forward(self, x, x0): |
|
x = self.conv1(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
x = self.combine(torch.cat((x, x0), 1)) |
|
x = F.relu(x) |
|
return self.conv2(x) |
|
|
|
|
|
class UpsampleBlockSN(nn.Module): |
|
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): |
|
super(UpsampleBlockSN, self).__init__() |
|
self.conv1 = spectral_norm(nn.Conv2d(inChannels, outChannels, kernel_size=3, stride=1, padding=1)) |
|
self.shortcut = spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, stride=1, padding=1)) |
|
layers = [] |
|
for _ in range(convNum - 1): |
|
layers.append(spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))) |
|
layers.append(nn.LeakyReLU(0.2, True)) |
|
if not (normLayer is None): |
|
layers.append(normLayer(outChannels)) |
|
self.conv2 = nn.Sequential(*layers) |
|
|
|
def forward(self, x, x0): |
|
x = self.conv1(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
x = x + self.shortcut(x0) |
|
x = F.leaky_relu(x, 2e-1) |
|
return self.conv2(x) |
|
|
|
|
|
class HourGlass2(nn.Module): |
|
def __init__(self, inChannel=3, outChannel=1, resNum=3, normLayer=None): |
|
super(HourGlass2, self).__init__() |
|
self.inConv = ConvBlock(inChannel, 64, convNum=2, normLayer=normLayer) |
|
self.down1 = DownsampleBlock(64, 128, convNum=2, normLayer=normLayer) |
|
self.down2 = DownsampleBlock(128, 256, convNum=2, normLayer=normLayer) |
|
self.residual = nn.Sequential(*[ResidualBlock(256) for _ in range(resNum)]) |
|
self.up2 = UpsampleBlock(256, 128, convNum=3, normLayer=normLayer) |
|
self.up1 = UpsampleBlock(128, 64, convNum=3, normLayer=normLayer) |
|
self.outConv = nn.Conv2d(64, outChannel, kernel_size=3, padding=1) |
|
|
|
def forward(self, x): |
|
f1 = self.inConv(x) |
|
f2 = self.down1(f1) |
|
f3 = self.down2(f2) |
|
r3 = self.residual(f3) |
|
r2 = self.up2(r3, f2) |
|
r1 = self.up1(r2, f1) |
|
y = self.outConv(r1) |
|
return y |
|
|
|
|
|
class ColorProbNet(nn.Module): |
|
def __init__(self, inChannel=1, outChannel=2, with_SA=False): |
|
super(ColorProbNet, self).__init__() |
|
BNFunc = nn.BatchNorm2d |
|
|
|
conv1_2 = [spectral_norm(nn.Conv2d(inChannel, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv1_2 += [spectral_norm(nn.Conv2d(64, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv1_2 += [BNFunc(64, affine=True)] |
|
|
|
conv2_3 = [spectral_norm(nn.Conv2d(64, 128, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv2_3 += [BNFunc(128, affine=True)] |
|
|
|
conv3_3 = [spectral_norm(nn.Conv2d(128, 256, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv3_3 += [BNFunc(256, affine=True)] |
|
|
|
conv4_3 = [spectral_norm(nn.Conv2d(256, 512, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv4_3 += [BNFunc(512, affine=True)] |
|
|
|
conv5_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv5_3 += [BNFunc(512, affine=True)] |
|
|
|
conv6_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv6_3 += [BNFunc(512, affine=True),] |
|
if with_SA: |
|
conv6_3 += [Self_Attn(512)] |
|
|
|
conv7_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] |
|
conv7_3 += [BNFunc(512, affine=True)] |
|
|
|
conv8up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(512, 256, 3, stride=1, padding=1),] |
|
conv3short8 = [nn.Conv2d(256, 256, 3, stride=1, padding=1),] |
|
conv8_3 = [nn.ReLU(True),] |
|
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),] |
|
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),] |
|
conv8_3 += [BNFunc(256, affine=True),] |
|
|
|
conv9up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(256, 128, 3, stride=1, padding=1),] |
|
conv9_2 = [nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(True),] |
|
conv9_2 += [BNFunc(128, affine=True)] |
|
|
|
conv10up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(128, 64, 3, stride=1, padding=1),] |
|
conv10_2 = [nn.ReLU(True),] |
|
conv10_2 += [nn.Conv2d(64, outChannel, 3, stride=1, padding=1), nn.ReLU(True),] |
|
|
|
self.conv1_2 = nn.Sequential(*conv1_2) |
|
self.conv2_3 = nn.Sequential(*conv2_3) |
|
self.conv3_3 = nn.Sequential(*conv3_3) |
|
self.conv4_3 = nn.Sequential(*conv4_3) |
|
self.conv5_3 = nn.Sequential(*conv5_3) |
|
self.conv6_3 = nn.Sequential(*conv6_3) |
|
self.conv7_3 = nn.Sequential(*conv7_3) |
|
self.conv8up = nn.Sequential(*conv8up) |
|
self.conv3short8 = nn.Sequential(*conv3short8) |
|
self.conv8_3 = nn.Sequential(*conv8_3) |
|
self.conv9up = nn.Sequential(*conv9up) |
|
self.conv9_2 = nn.Sequential(*conv9_2) |
|
self.conv10up = nn.Sequential(*conv10up) |
|
self.conv10_2 = nn.Sequential(*conv10_2) |
|
|
|
|
|
|
|
def forward(self, input_grays): |
|
f1_2 = self.conv1_2(input_grays) |
|
f2_3 = self.conv2_3(f1_2) |
|
f3_3 = self.conv3_3(f2_3) |
|
f4_3 = self.conv4_3(f3_3) |
|
f5_3 = self.conv5_3(f4_3) |
|
f6_3 = self.conv6_3(f5_3) |
|
f7_3 = self.conv7_3(f6_3) |
|
f8_up = self.conv8up(f7_3) + self.conv3short8(f3_3) |
|
f8_3 = self.conv8_3(f8_up) |
|
f9_up = self.conv9up(f8_3) |
|
f9_2 = self.conv9_2(f9_up) |
|
f10_up = self.conv10up(f9_2) |
|
f10_2 = self.conv10_2(f10_up) |
|
out_feats = f10_2 |
|
|
|
return out_feats |
|
|
|
|
|
|
|
def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1): |
|
if batchNorm: |
|
return nn.Sequential( |
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=False), |
|
nn.BatchNorm2d(out_planes), |
|
nn.LeakyReLU(0.1) |
|
) |
|
else: |
|
return nn.Sequential( |
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True), |
|
nn.LeakyReLU(0.1) |
|
) |
|
|
|
|
|
def deconv(in_planes, out_planes): |
|
return nn.Sequential( |
|
nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True), |
|
nn.LeakyReLU(0.1) |
|
) |
|
|
|
class SpixelNet(nn.Module): |
|
def __init__(self, inChannel=3, outChannel=9, batchNorm=True): |
|
super(SpixelNet,self).__init__() |
|
self.batchNorm = batchNorm |
|
self.conv0a = conv(self.batchNorm, inChannel, 16, kernel_size=3) |
|
self.conv0b = conv(self.batchNorm, 16, 16, kernel_size=3) |
|
self.conv1a = conv(self.batchNorm, 16, 32, kernel_size=3, stride=2) |
|
self.conv1b = conv(self.batchNorm, 32, 32, kernel_size=3) |
|
self.conv2a = conv(self.batchNorm, 32, 64, kernel_size=3, stride=2) |
|
self.conv2b = conv(self.batchNorm, 64, 64, kernel_size=3) |
|
self.conv3a = conv(self.batchNorm, 64, 128, kernel_size=3, stride=2) |
|
self.conv3b = conv(self.batchNorm, 128, 128, kernel_size=3) |
|
self.conv4a = conv(self.batchNorm, 128, 256, kernel_size=3, stride=2) |
|
self.conv4b = conv(self.batchNorm, 256, 256, kernel_size=3) |
|
self.deconv3 = deconv(256, 128) |
|
self.conv3_1 = conv(self.batchNorm, 256, 128) |
|
self.deconv2 = deconv(128, 64) |
|
self.conv2_1 = conv(self.batchNorm, 128, 64) |
|
self.deconv1 = deconv(64, 32) |
|
self.conv1_1 = conv(self.batchNorm, 64, 32) |
|
self.deconv0 = deconv(32, 16) |
|
self.conv0_1 = conv(self.batchNorm, 32, 16) |
|
self.pred_mask0 = nn.Conv2d(16, outChannel, kernel_size=3, stride=1, padding=1, bias=True) |
|
self.softmax = nn.Softmax(1) |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): |
|
init.kaiming_normal_(m.weight, 0.1) |
|
if m.bias is not None: |
|
init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
out1 = self.conv0b(self.conv0a(x)) |
|
out2 = self.conv1b(self.conv1a(out1)) |
|
out3 = self.conv2b(self.conv2a(out2)) |
|
out4 = self.conv3b(self.conv3a(out3)) |
|
out5 = self.conv4b(self.conv4a(out4)) |
|
out_deconv3 = self.deconv3(out5) |
|
concat3 = torch.cat((out4, out_deconv3), 1) |
|
out_conv3_1 = self.conv3_1(concat3) |
|
out_deconv2 = self.deconv2(out_conv3_1) |
|
concat2 = torch.cat((out3, out_deconv2), 1) |
|
out_conv2_1 = self.conv2_1(concat2) |
|
out_deconv1 = self.deconv1(out_conv2_1) |
|
concat1 = torch.cat((out2, out_deconv1), 1) |
|
out_conv1_1 = self.conv1_1(concat1) |
|
out_deconv0 = self.deconv0(out_conv1_1) |
|
concat0 = torch.cat((out1, out_deconv0), 1) |
|
out_conv0_1 = self.conv0_1(concat0) |
|
mask0 = self.pred_mask0(out_conv0_1) |
|
prob0 = self.softmax(mask0) |
|
return prob0 |
|
|
|
|
|
|
|
|
|
class VGG19(torch.nn.Module): |
|
def __init__(self, requires_grad=False, local_pretrained_path='checkpoints/vgg19.pth'): |
|
super().__init__() |
|
|
|
model = torchvision.models.vgg19() |
|
model.load_state_dict(torch.load(local_pretrained_path)) |
|
vgg_pretrained_features = model.features |
|
|
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
for x in range(2): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h_relu1 = self.slice1(X) |
|
h_relu2 = self.slice2(h_relu1) |
|
h_relu3 = self.slice3(h_relu2) |
|
h_relu4 = self.slice4(h_relu3) |
|
h_relu5 = self.slice5(h_relu4) |
|
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] |
|
return out |