graph-g / app.py
DmitrMakeev's picture
Update app.py
597e8ee
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
from ast import literal_eval
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
return text
def generate_knowledge_graph(api_key, user_input):
openai.api_key = api_key
# Check if input is URL or text
if user_input.startswith("http://") or user_input.startswith("https://"):
user_input = scrape_text_from_url(user_input)
# Chamar a API da OpenAI
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
}
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
],
function_call={"name": "knowledge_graph"},
)
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
try:
if isinstance(response_data, str):
response_data = literal_eval(response_data)
except (ValueError, SyntaxError) as e:
print(f"Error in decoding JSON or literal_eval: {e}")
return "Error in decoding JSON"
if not isinstance(response_data, dict):
print("Unexpected data type for response_data")
return "Error: Unexpected data type"
dot = Digraph(comment="Knowledge Graph", format='png')
dot.attr(dpi='300')
dot.attr(bgcolor='white')
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
dot.attr('edge', color='black', fontcolor='black')
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
image_data = dot.pipe()
image = Image.open(io.BytesIO(image_data))
return image
title_and_description = """
ChatGPT - BPMN - Generator
"""
with gr.Blocks() as app:
gr.Markdown(title_and_description)
with gr.Row():
with gr.Column():
result_image = gr.Image(type="pil", label="OUT - BPMN")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="Ключ OpenAI API", type="password")
user_input = gr.Textbox(label="Желаемая концепция", type="text")
run_btn = gr.Button("Сгенерировать BPMN")
run_btn.click(
generate_knowledge_graph,
inputs=[api_key, user_input],
outputs=[result_image]
)
app.queue(concurrency_count=10)
print("Iniciando a interface Gradio...")
app.launch()