Spaces:
Running
on
A10G
Running
on
A10G
File size: 3,915 Bytes
a22eb82 0a11942 9ab094a a22eb82 a86a2b8 a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import cv2
import time
import glob
import argparse
import face_alignment
import numpy as np
from PIL import Image
from tqdm import tqdm
from itertools import cycle
from torch.multiprocessing import Pool, Process, set_start_method
class KeypointExtractor():
def __init__(self, device):
self.detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,
device=device)
def extract_keypoint(self, images, name=None, info=True):
if isinstance(images, list):
keypoints = []
if info:
i_range = tqdm(images,desc='landmark Det:')
else:
i_range = images
for image in i_range:
current_kp = self.extract_keypoint(image)
if np.mean(current_kp) == -1 and keypoints:
keypoints.append(keypoints[-1])
else:
keypoints.append(current_kp[None])
keypoints = np.concatenate(keypoints, 0)
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
return keypoints
else:
while True:
try:
keypoints = self.detector.get_landmarks_from_image(np.array(images))[0]
break
except RuntimeError as e:
if str(e).startswith('CUDA'):
print("Warning: out of memory, sleep for 1s")
time.sleep(1)
else:
print(e)
break
except TypeError:
print('No face detected in this image')
shape = [68, 2]
keypoints = -1. * np.ones(shape)
break
if name is not None:
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
return keypoints
def read_video(filename):
frames = []
cap = cv2.VideoCapture(filename)
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
else:
break
cap.release()
return frames
def run(data):
filename, opt, device = data
os.environ['CUDA_VISIBLE_DEVICES'] = device
kp_extractor = KeypointExtractor()
images = read_video(filename)
name = filename.split('/')[-2:]
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
kp_extractor.extract_keypoint(
images,
name=os.path.join(opt.output_dir, name[-2], name[-1])
)
if __name__ == '__main__':
set_start_method('spawn')
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_dir', type=str, help='the folder of the input files')
parser.add_argument('--output_dir', type=str, help='the folder of the output files')
parser.add_argument('--device_ids', type=str, default='0,1')
parser.add_argument('--workers', type=int, default=4)
opt = parser.parse_args()
filenames = list()
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
extensions = VIDEO_EXTENSIONS
for ext in extensions:
os.listdir(f'{opt.input_dir}')
print(f'{opt.input_dir}/*.{ext}')
filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}'))
print('Total number of videos:', len(filenames))
pool = Pool(opt.workers)
args_list = cycle([opt])
device_ids = opt.device_ids.split(",")
device_ids = cycle(device_ids)
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
None
|