vinthony's picture
init
a22eb82
raw
history blame
17.3 kB
# coding: utf-8
import os
import pickle
import matplotlib
import pandas as pd
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import timeit
import sklearn
import argparse
import cv2
import numpy as np
import torch
from skimage import transform as trans
from backbones import get_model
from sklearn.metrics import roc_curve, auc
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap
from prettytable import PrettyTable
from pathlib import Path
import sys
import warnings
sys.path.insert(0, "../")
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='do ijb test')
# general
parser.add_argument('--model-prefix', default='', help='path to load model.')
parser.add_argument('--image-path', default='', type=str, help='')
parser.add_argument('--result-dir', default='.', type=str, help='')
parser.add_argument('--batch-size', default=128, type=int, help='')
parser.add_argument('--network', default='iresnet50', type=str, help='')
parser.add_argument('--job', default='insightface', type=str, help='job name')
parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB')
args = parser.parse_args()
target = args.target
model_path = args.model_prefix
image_path = args.image_path
result_dir = args.result_dir
gpu_id = None
use_norm_score = True # if Ture, TestMode(N1)
use_detector_score = True # if Ture, TestMode(D1)
use_flip_test = True # if Ture, TestMode(F1)
job = args.job
batch_size = args.batch_size
class Embedding(object):
def __init__(self, prefix, data_shape, batch_size=1):
image_size = (112, 112)
self.image_size = image_size
weight = torch.load(prefix)
resnet = get_model(args.network, dropout=0, fp16=False).cuda()
resnet.load_state_dict(weight)
model = torch.nn.DataParallel(resnet)
self.model = model
self.model.eval()
src = np.array([
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041]], dtype=np.float32)
src[:, 0] += 8.0
self.src = src
self.batch_size = batch_size
self.data_shape = data_shape
def get(self, rimg, landmark):
assert landmark.shape[0] == 68 or landmark.shape[0] == 5
assert landmark.shape[1] == 2
if landmark.shape[0] == 68:
landmark5 = np.zeros((5, 2), dtype=np.float32)
landmark5[0] = (landmark[36] + landmark[39]) / 2
landmark5[1] = (landmark[42] + landmark[45]) / 2
landmark5[2] = landmark[30]
landmark5[3] = landmark[48]
landmark5[4] = landmark[54]
else:
landmark5 = landmark
tform = trans.SimilarityTransform()
tform.estimate(landmark5, self.src)
M = tform.params[0:2, :]
img = cv2.warpAffine(rimg,
M, (self.image_size[1], self.image_size[0]),
borderValue=0.0)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_flip = np.fliplr(img)
img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB
img_flip = np.transpose(img_flip, (2, 0, 1))
input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8)
input_blob[0] = img
input_blob[1] = img_flip
return input_blob
@torch.no_grad()
def forward_db(self, batch_data):
imgs = torch.Tensor(batch_data).cuda()
imgs.div_(255).sub_(0.5).div_(0.5)
feat = self.model(imgs)
feat = feat.reshape([self.batch_size, 2 * feat.shape[1]])
return feat.cpu().numpy()
# 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[]
def divideIntoNstrand(listTemp, n):
twoList = [[] for i in range(n)]
for i, e in enumerate(listTemp):
twoList[i % n].append(e)
return twoList
def read_template_media_list(path):
# ijb_meta = np.loadtxt(path, dtype=str)
ijb_meta = pd.read_csv(path, sep=' ', header=None).values
templates = ijb_meta[:, 1].astype(np.int)
medias = ijb_meta[:, 2].astype(np.int)
return templates, medias
# In[ ]:
def read_template_pair_list(path):
# pairs = np.loadtxt(path, dtype=str)
pairs = pd.read_csv(path, sep=' ', header=None).values
# print(pairs.shape)
# print(pairs[:, 0].astype(np.int))
t1 = pairs[:, 0].astype(np.int)
t2 = pairs[:, 1].astype(np.int)
label = pairs[:, 2].astype(np.int)
return t1, t2, label
# In[ ]:
def read_image_feature(path):
with open(path, 'rb') as fid:
img_feats = pickle.load(fid)
return img_feats
# In[ ]:
def get_image_feature(img_path, files_list, model_path, epoch, gpu_id):
batch_size = args.batch_size
data_shape = (3, 112, 112)
files = files_list
print('files:', len(files))
rare_size = len(files) % batch_size
faceness_scores = []
batch = 0
img_feats = np.empty((len(files), 1024), dtype=np.float32)
batch_data = np.empty((2 * batch_size, 3, 112, 112))
embedding = Embedding(model_path, data_shape, batch_size)
for img_index, each_line in enumerate(files[:len(files) - rare_size]):
name_lmk_score = each_line.strip().split(' ')
img_name = os.path.join(img_path, name_lmk_score[0])
img = cv2.imread(img_name)
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
dtype=np.float32)
lmk = lmk.reshape((5, 2))
input_blob = embedding.get(img, lmk)
batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0]
batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1]
if (img_index + 1) % batch_size == 0:
print('batch', batch)
img_feats[batch * batch_size:batch * batch_size +
batch_size][:] = embedding.forward_db(batch_data)
batch += 1
faceness_scores.append(name_lmk_score[-1])
batch_data = np.empty((2 * rare_size, 3, 112, 112))
embedding = Embedding(model_path, data_shape, rare_size)
for img_index, each_line in enumerate(files[len(files) - rare_size:]):
name_lmk_score = each_line.strip().split(' ')
img_name = os.path.join(img_path, name_lmk_score[0])
img = cv2.imread(img_name)
lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
dtype=np.float32)
lmk = lmk.reshape((5, 2))
input_blob = embedding.get(img, lmk)
batch_data[2 * img_index][:] = input_blob[0]
batch_data[2 * img_index + 1][:] = input_blob[1]
if (img_index + 1) % rare_size == 0:
print('batch', batch)
img_feats[len(files) -
rare_size:][:] = embedding.forward_db(batch_data)
batch += 1
faceness_scores.append(name_lmk_score[-1])
faceness_scores = np.array(faceness_scores).astype(np.float32)
# img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01
# faceness_scores = np.ones( (len(files), ), dtype=np.float32 )
return img_feats, faceness_scores
# In[ ]:
def image2template_feature(img_feats=None, templates=None, medias=None):
# ==========================================================
# 1. face image feature l2 normalization. img_feats:[number_image x feats_dim]
# 2. compute media feature.
# 3. compute template feature.
# ==========================================================
unique_templates = np.unique(templates)
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
for count_template, uqt in enumerate(unique_templates):
(ind_t,) = np.where(templates == uqt)
face_norm_feats = img_feats[ind_t]
face_medias = medias[ind_t]
unique_medias, unique_media_counts = np.unique(face_medias,
return_counts=True)
media_norm_feats = []
for u, ct in zip(unique_medias, unique_media_counts):
(ind_m,) = np.where(face_medias == u)
if ct == 1:
media_norm_feats += [face_norm_feats[ind_m]]
else: # image features from the same video will be aggregated into one feature
media_norm_feats += [
np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)
]
media_norm_feats = np.array(media_norm_feats)
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
template_feats[count_template] = np.sum(media_norm_feats, axis=0)
if count_template % 2000 == 0:
print('Finish Calculating {} template features.'.format(
count_template))
# template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True))
template_norm_feats = sklearn.preprocessing.normalize(template_feats)
# print(template_norm_feats.shape)
return template_norm_feats, unique_templates
# In[ ]:
def verification(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
# ==========================================================
# Compute set-to-set Similarity Score.
# ==========================================================
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),)) # save cosine distance between pairs
total_pairs = np.array(range(len(p1)))
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
sublists = [
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
# In[ ]:
def verification2(template_norm_feats=None,
unique_templates=None,
p1=None,
p2=None):
template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
for count_template, uqt in enumerate(unique_templates):
template2id[uqt] = count_template
score = np.zeros((len(p1),)) # save cosine distance between pairs
total_pairs = np.array(range(len(p1)))
batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
sublists = [
total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
]
total_sublists = len(sublists)
for c, s in enumerate(sublists):
feat1 = template_norm_feats[template2id[p1[s]]]
feat2 = template_norm_feats[template2id[p2[s]]]
similarity_score = np.sum(feat1 * feat2, -1)
score[s] = similarity_score.flatten()
if c % 10 == 0:
print('Finish {}/{} pairs.'.format(c, total_sublists))
return score
def read_score(path):
with open(path, 'rb') as fid:
img_feats = pickle.load(fid)
return img_feats
# # Step1: Load Meta Data
# In[ ]:
assert target == 'IJBC' or target == 'IJBB'
# =============================================================
# load image and template relationships for template feature embedding
# tid --> template id, mid --> media id
# format:
# image_name tid mid
# =============================================================
start = timeit.default_timer()
templates, medias = read_template_media_list(
os.path.join('%s/meta' % image_path,
'%s_face_tid_mid.txt' % target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# In[ ]:
# =============================================================
# load template pairs for template-to-template verification
# tid : template id, label : 1/0
# format:
# tid_1 tid_2 label
# =============================================================
start = timeit.default_timer()
p1, p2, label = read_template_pair_list(
os.path.join('%s/meta' % image_path,
'%s_template_pair_label.txt' % target.lower()))
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# # Step 2: Get Image Features
# In[ ]:
# =============================================================
# load image features
# format:
# img_feats: [image_num x feats_dim] (227630, 512)
# =============================================================
start = timeit.default_timer()
img_path = '%s/loose_crop' % image_path
img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower())
img_list = open(img_list_path)
files = img_list.readlines()
# files_list = divideIntoNstrand(files, rank_size)
files_list = files
# img_feats
# for i in range(rank_size):
img_feats, faceness_scores = get_image_feature(img_path, files_list,
model_path, 0, gpu_id)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0],
img_feats.shape[1]))
# # Step3: Get Template Features
# In[ ]:
# =============================================================
# compute template features from image features.
# =============================================================
start = timeit.default_timer()
# ==========================================================
# Norm feature before aggregation into template feature?
# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face).
# ==========================================================
# 1. FaceScore (Feature Norm)
# 2. FaceScore (Detector)
if use_flip_test:
# concat --- F1
# img_input_feats = img_feats
# add --- F2
img_input_feats = img_feats[:, 0:img_feats.shape[1] //
2] + img_feats[:, img_feats.shape[1] // 2:]
else:
img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
if use_norm_score:
img_input_feats = img_input_feats
else:
# normalise features to remove norm information
img_input_feats = img_input_feats / np.sqrt(
np.sum(img_input_feats ** 2, -1, keepdims=True))
if use_detector_score:
print(img_input_feats.shape, faceness_scores.shape)
img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
else:
img_input_feats = img_input_feats
template_norm_feats, unique_templates = image2template_feature(
img_input_feats, templates, medias)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# # Step 4: Get Template Similarity Scores
# In[ ]:
# =============================================================
# compute verification scores between template pairs.
# =============================================================
start = timeit.default_timer()
score = verification(template_norm_feats, unique_templates, p1, p2)
stop = timeit.default_timer()
print('Time: %.2f s. ' % (stop - start))
# In[ ]:
save_path = os.path.join(result_dir, args.job)
# save_path = result_dir + '/%s_result' % target
if not os.path.exists(save_path):
os.makedirs(save_path)
score_save_file = os.path.join(save_path, "%s.npy" % target.lower())
np.save(score_save_file, score)
# # Step 5: Get ROC Curves and TPR@FPR Table
# In[ ]:
files = [score_save_file]
methods = []
scores = []
for file in files:
methods.append(Path(file).stem)
scores.append(np.load(file))
methods = np.array(methods)
scores = dict(zip(methods, scores))
colours = dict(
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2')))
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1]
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels])
fig = plt.figure()
for method in methods:
fpr, tpr, _ = roc_curve(label, scores[method])
roc_auc = auc(fpr, tpr)
fpr = np.flipud(fpr)
tpr = np.flipud(tpr) # select largest tpr at same fpr
plt.plot(fpr,
tpr,
color=colours[method],
lw=1,
label=('[%s (AUC = %0.4f %%)]' %
(method.split('-')[-1], roc_auc * 100)))
tpr_fpr_row = []
tpr_fpr_row.append("%s-%s" % (method, target))
for fpr_iter in np.arange(len(x_labels)):
_, min_index = min(
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
tpr_fpr_table.add_row(tpr_fpr_row)
plt.xlim([10 ** -6, 0.1])
plt.ylim([0.3, 1.0])
plt.grid(linestyle='--', linewidth=1)
plt.xticks(x_labels)
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
plt.xscale('log')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC on IJB')
plt.legend(loc="lower right")
fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower()))
print(tpr_fpr_table)