Spaces:
Running
on
A10G
Running
on
A10G
# check the sync of 3dmm feature and the audio | |
import cv2 | |
import numpy as np | |
from src.face3d.models.bfm import ParametricFaceModel | |
from src.face3d.models.facerecon_model import FaceReconModel | |
import torch | |
import subprocess, platform | |
import scipy.io as scio | |
from tqdm import tqdm | |
# draft | |
def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, exp_dim=64): | |
coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm'] | |
coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm'] | |
coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0) # 257 | |
coeff_full[:, 80:144] = coeff_pred[:, 0:64] | |
coeff_full[:, 224:227] = coeff_pred[:, 64:67] # 3 dim translation | |
coeff_full[:, 254:] = coeff_pred[:, 67:] # 3 dim translation | |
tmp_video_path = '/tmp/face3dtmp.mp4' | |
facemodel = FaceReconModel(args) | |
video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224)) | |
for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'): | |
cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device) | |
facemodel.forward(cur_coeff_full, device) | |
predicted_landmark = facemodel.pred_lm # TODO. | |
predicted_landmark = predicted_landmark.cpu().numpy().squeeze() | |
rendered_img = facemodel.pred_face | |
rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0) | |
out_img = rendered_img[:, :, :3].astype(np.uint8) | |
video.write(np.uint8(out_img[:,:,::-1])) | |
video.release() | |
command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path) | |
subprocess.call(command, shell=platform.system() != 'Windows') | |