Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import cv2 | |
import numpy as np | |
from scipy.io import loadmat | |
import tensorflow as tf | |
from util.preprocess import align_for_lm | |
from shutil import move | |
mean_face = np.loadtxt('util/test_mean_face.txt') | |
mean_face = mean_face.reshape([68, 2]) | |
def save_label(labels, save_path): | |
np.savetxt(save_path, labels) | |
def draw_landmarks(img, landmark, save_name): | |
landmark = landmark | |
lm_img = np.zeros([img.shape[0], img.shape[1], 3]) | |
lm_img[:] = img.astype(np.float32) | |
landmark = np.round(landmark).astype(np.int32) | |
for i in range(len(landmark)): | |
for j in range(-1, 1): | |
for k in range(-1, 1): | |
if img.shape[0] - 1 - landmark[i, 1]+j > 0 and \ | |
img.shape[0] - 1 - landmark[i, 1]+j < img.shape[0] and \ | |
landmark[i, 0]+k > 0 and \ | |
landmark[i, 0]+k < img.shape[1]: | |
lm_img[img.shape[0] - 1 - landmark[i, 1]+j, landmark[i, 0]+k, | |
:] = np.array([0, 0, 255]) | |
lm_img = lm_img.astype(np.uint8) | |
cv2.imwrite(save_name, lm_img) | |
def load_data(img_name, txt_name): | |
return cv2.imread(img_name), np.loadtxt(txt_name) | |
# create tensorflow graph for landmark detector | |
def load_lm_graph(graph_filename): | |
with tf.gfile.GFile(graph_filename, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
with tf.Graph().as_default() as graph: | |
tf.import_graph_def(graph_def, name='net') | |
img_224 = graph.get_tensor_by_name('net/input_imgs:0') | |
output_lm = graph.get_tensor_by_name('net/lm:0') | |
lm_sess = tf.Session(graph=graph) | |
return lm_sess,img_224,output_lm | |
# landmark detection | |
def detect_68p(img_path,sess,input_op,output_op): | |
print('detecting landmarks......') | |
names = [i for i in sorted(os.listdir( | |
img_path)) if 'jpg' in i or 'png' in i or 'jpeg' in i or 'PNG' in i] | |
vis_path = os.path.join(img_path, 'vis') | |
remove_path = os.path.join(img_path, 'remove') | |
save_path = os.path.join(img_path, 'landmarks') | |
if not os.path.isdir(vis_path): | |
os.makedirs(vis_path) | |
if not os.path.isdir(remove_path): | |
os.makedirs(remove_path) | |
if not os.path.isdir(save_path): | |
os.makedirs(save_path) | |
for i in range(0, len(names)): | |
name = names[i] | |
print('%05d' % (i), ' ', name) | |
full_image_name = os.path.join(img_path, name) | |
txt_name = '.'.join(name.split('.')[:-1]) + '.txt' | |
full_txt_name = os.path.join(img_path, 'detections', txt_name) # 5 facial landmark path for each image | |
# if an image does not have detected 5 facial landmarks, remove it from the training list | |
if not os.path.isfile(full_txt_name): | |
move(full_image_name, os.path.join(remove_path, name)) | |
continue | |
# load data | |
img, five_points = load_data(full_image_name, full_txt_name) | |
input_img, scale, bbox = align_for_lm(img, five_points) # align for 68 landmark detection | |
# if the alignment fails, remove corresponding image from the training list | |
if scale == 0: | |
move(full_txt_name, os.path.join( | |
remove_path, txt_name)) | |
move(full_image_name, os.path.join(remove_path, name)) | |
continue | |
# detect landmarks | |
input_img = np.reshape( | |
input_img, [1, 224, 224, 3]).astype(np.float32) | |
landmark = sess.run( | |
output_op, feed_dict={input_op: input_img}) | |
# transform back to original image coordinate | |
landmark = landmark.reshape([68, 2]) + mean_face | |
landmark[:, 1] = 223 - landmark[:, 1] | |
landmark = landmark / scale | |
landmark[:, 0] = landmark[:, 0] + bbox[0] | |
landmark[:, 1] = landmark[:, 1] + bbox[1] | |
landmark[:, 1] = img.shape[0] - 1 - landmark[:, 1] | |
if i % 100 == 0: | |
draw_landmarks(img, landmark, os.path.join(vis_path, name)) | |
save_label(landmark, os.path.join(save_path, txt_name)) | |