Spaces:
Running
on
A10G
Running
on
A10G
"""This script defines the custom dataset for Deep3DFaceRecon_pytorch | |
""" | |
import os.path | |
from data.base_dataset import BaseDataset, get_transform, get_affine_mat, apply_img_affine, apply_lm_affine | |
from data.image_folder import make_dataset | |
from PIL import Image | |
import random | |
import util.util as util | |
import numpy as np | |
import json | |
import torch | |
from scipy.io import loadmat, savemat | |
import pickle | |
from util.preprocess import align_img, estimate_norm | |
from util.load_mats import load_lm3d | |
def default_flist_reader(flist): | |
""" | |
flist format: impath label\nimpath label\n ...(same to caffe's filelist) | |
""" | |
imlist = [] | |
with open(flist, 'r') as rf: | |
for line in rf.readlines(): | |
impath = line.strip() | |
imlist.append(impath) | |
return imlist | |
def jason_flist_reader(flist): | |
with open(flist, 'r') as fp: | |
info = json.load(fp) | |
return info | |
def parse_label(label): | |
return torch.tensor(np.array(label).astype(np.float32)) | |
class FlistDataset(BaseDataset): | |
""" | |
It requires one directories to host training images '/path/to/data/train' | |
You can train the model with the dataset flag '--dataroot /path/to/data'. | |
""" | |
def __init__(self, opt): | |
"""Initialize this dataset class. | |
Parameters: | |
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions | |
""" | |
BaseDataset.__init__(self, opt) | |
self.lm3d_std = load_lm3d(opt.bfm_folder) | |
msk_names = default_flist_reader(opt.flist) | |
self.msk_paths = [os.path.join(opt.data_root, i) for i in msk_names] | |
self.size = len(self.msk_paths) | |
self.opt = opt | |
self.name = 'train' if opt.isTrain else 'val' | |
if '_' in opt.flist: | |
self.name += '_' + opt.flist.split(os.sep)[-1].split('_')[0] | |
def __getitem__(self, index): | |
"""Return a data point and its metadata information. | |
Parameters: | |
index (int) -- a random integer for data indexing | |
Returns a dictionary that contains A, B, A_paths and B_paths | |
img (tensor) -- an image in the input domain | |
msk (tensor) -- its corresponding attention mask | |
lm (tensor) -- its corresponding 3d landmarks | |
im_paths (str) -- image paths | |
aug_flag (bool) -- a flag used to tell whether its raw or augmented | |
""" | |
msk_path = self.msk_paths[index % self.size] # make sure index is within then range | |
img_path = msk_path.replace('mask/', '') | |
lm_path = '.'.join(msk_path.replace('mask', 'landmarks').split('.')[:-1]) + '.txt' | |
raw_img = Image.open(img_path).convert('RGB') | |
raw_msk = Image.open(msk_path).convert('RGB') | |
raw_lm = np.loadtxt(lm_path).astype(np.float32) | |
_, img, lm, msk = align_img(raw_img, raw_lm, self.lm3d_std, raw_msk) | |
aug_flag = self.opt.use_aug and self.opt.isTrain | |
if aug_flag: | |
img, lm, msk = self._augmentation(img, lm, self.opt, msk) | |
_, H = img.size | |
M = estimate_norm(lm, H) | |
transform = get_transform() | |
img_tensor = transform(img) | |
msk_tensor = transform(msk)[:1, ...] | |
lm_tensor = parse_label(lm) | |
M_tensor = parse_label(M) | |
return {'imgs': img_tensor, | |
'lms': lm_tensor, | |
'msks': msk_tensor, | |
'M': M_tensor, | |
'im_paths': img_path, | |
'aug_flag': aug_flag, | |
'dataset': self.name} | |
def _augmentation(self, img, lm, opt, msk=None): | |
affine, affine_inv, flip = get_affine_mat(opt, img.size) | |
img = apply_img_affine(img, affine_inv) | |
lm = apply_lm_affine(lm, affine, flip, img.size) | |
if msk is not None: | |
msk = apply_img_affine(msk, affine_inv, method=Image.BILINEAR) | |
return img, lm, msk | |
def __len__(self): | |
"""Return the total number of images in the dataset. | |
""" | |
return self.size | |