Spaces:
Running
on
A10G
Running
on
A10G
from scipy.spatial import ConvexHull | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from tqdm import tqdm | |
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, | |
use_relative_movement=False, use_relative_jacobian=False): | |
if adapt_movement_scale: | |
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume | |
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume | |
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) | |
else: | |
adapt_movement_scale = 1 | |
kp_new = {k: v for k, v in kp_driving.items()} | |
if use_relative_movement: | |
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) | |
kp_value_diff *= adapt_movement_scale | |
kp_new['value'] = kp_value_diff + kp_source['value'] | |
if use_relative_jacobian: | |
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) | |
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) | |
return kp_new | |
def headpose_pred_to_degree(pred): | |
device = pred.device | |
idx_tensor = [idx for idx in range(66)] | |
idx_tensor = torch.FloatTensor(idx_tensor).type_as(pred).to(device) | |
pred = F.softmax(pred) | |
degree = torch.sum(pred*idx_tensor, 1) * 3 - 99 | |
return degree | |
def get_rotation_matrix(yaw, pitch, roll): | |
yaw = yaw / 180 * 3.14 | |
pitch = pitch / 180 * 3.14 | |
roll = roll / 180 * 3.14 | |
roll = roll.unsqueeze(1) | |
pitch = pitch.unsqueeze(1) | |
yaw = yaw.unsqueeze(1) | |
pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch), | |
torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch), | |
torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1) | |
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) | |
yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw), | |
torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw), | |
-torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1) | |
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) | |
roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll), | |
torch.sin(roll), torch.cos(roll), torch.zeros_like(roll), | |
torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1) | |
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) | |
rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat) | |
return rot_mat | |
def keypoint_transformation(kp_canonical, he, wo_exp=False): | |
kp = kp_canonical['value'] # (bs, k, 3) | |
yaw, pitch, roll= he['yaw'], he['pitch'], he['roll'] | |
yaw = headpose_pred_to_degree(yaw) | |
pitch = headpose_pred_to_degree(pitch) | |
roll = headpose_pred_to_degree(roll) | |
if 'yaw_in' in he: | |
yaw = he['yaw_in'] | |
if 'pitch_in' in he: | |
pitch = he['pitch_in'] | |
if 'roll_in' in he: | |
roll = he['roll_in'] | |
rot_mat = get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3) | |
t, exp = he['t'], he['exp'] | |
if wo_exp: | |
exp = exp*0 | |
# keypoint rotation | |
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp) | |
# keypoint translation | |
t[:, 0] = t[:, 0]*0 | |
t[:, 2] = t[:, 2]*0 | |
t = t.unsqueeze(1).repeat(1, kp.shape[1], 1) | |
kp_t = kp_rotated + t | |
# add expression deviation | |
exp = exp.view(exp.shape[0], -1, 3) | |
kp_transformed = kp_t + exp | |
return {'value': kp_transformed} | |
def make_animation(source_image, source_semantics, target_semantics, | |
generator, kp_detector, he_estimator, mapping, | |
yaw_c_seq=None, pitch_c_seq=None, roll_c_seq=None, | |
use_exp=True, use_half=False): | |
with torch.no_grad(): | |
predictions = [] | |
kp_canonical = kp_detector(source_image) | |
he_source = mapping(source_semantics) | |
kp_source = keypoint_transformation(kp_canonical, he_source) | |
for frame_idx in tqdm(range(target_semantics.shape[1]), 'Face Renderer:'): | |
# still check the dimension | |
# print(target_semantics.shape, source_semantics.shape) | |
target_semantics_frame = target_semantics[:, frame_idx] | |
he_driving = mapping(target_semantics_frame) | |
if yaw_c_seq is not None: | |
he_driving['yaw_in'] = yaw_c_seq[:, frame_idx] | |
if pitch_c_seq is not None: | |
he_driving['pitch_in'] = pitch_c_seq[:, frame_idx] | |
if roll_c_seq is not None: | |
he_driving['roll_in'] = roll_c_seq[:, frame_idx] | |
kp_driving = keypoint_transformation(kp_canonical, he_driving) | |
kp_norm = kp_driving | |
out = generator(source_image, kp_source=kp_source, kp_driving=kp_norm) | |
''' | |
source_image_new = out['prediction'].squeeze(1) | |
kp_canonical_new = kp_detector(source_image_new) | |
he_source_new = he_estimator(source_image_new) | |
kp_source_new = keypoint_transformation(kp_canonical_new, he_source_new, wo_exp=True) | |
kp_driving_new = keypoint_transformation(kp_canonical_new, he_driving, wo_exp=True) | |
out = generator(source_image_new, kp_source=kp_source_new, kp_driving=kp_driving_new) | |
''' | |
predictions.append(out['prediction']) | |
predictions_ts = torch.stack(predictions, dim=1) | |
return predictions_ts | |
class AnimateModel(torch.nn.Module): | |
""" | |
Merge all generator related updates into single model for better multi-gpu usage | |
""" | |
def __init__(self, generator, kp_extractor, mapping): | |
super(AnimateModel, self).__init__() | |
self.kp_extractor = kp_extractor | |
self.generator = generator | |
self.mapping = mapping | |
self.kp_extractor.eval() | |
self.generator.eval() | |
self.mapping.eval() | |
def forward(self, x): | |
source_image = x['source_image'] | |
source_semantics = x['source_semantics'] | |
target_semantics = x['target_semantics'] | |
yaw_c_seq = x['yaw_c_seq'] | |
pitch_c_seq = x['pitch_c_seq'] | |
roll_c_seq = x['roll_c_seq'] | |
predictions_video = make_animation(source_image, source_semantics, target_semantics, | |
self.generator, self.kp_extractor, | |
self.mapping, use_exp = True, | |
yaw_c_seq=yaw_c_seq, pitch_c_seq=pitch_c_seq, roll_c_seq=roll_c_seq) | |
return predictions_video |