import os, sys import tempfile import gradio as gr from modules.text2speech import text2speech from modules.sadtalker_test import SadTalker def get_driven_audio(audio): if os.path.isfile(audio): return audio else: save_path = tempfile.NamedTemporaryFile( delete=False, suffix=("." + "wav"), ) gen_audio = text2speech(audio, save_path.name) return gen_audio, gen_audio def get_source_image(image): return image def sadtalker_demo(result_dir='./tmp/'): sad_talker = SadTalker() with gr.Blocks(analytics_enabled=False) as sadtalker_interface: gr.Markdown("
") with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_source_image"): with gr.TabItem('Upload image'): with gr.Row(): source_image = gr.Image(label="Source image", source="upload", type="filepath").style(height=256,width=256) with gr.Tabs(elem_id="sadtalker_driven_audio"): with gr.TabItem('Upload audio'): with gr.Column(variant='panel'): driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath") # submit_audio_1 = gr.Button('Submit', variant='primary') # submit_audio_1.click(fn=get_driven_audio, inputs=input_audio1, outputs=driven_audio) with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_checkbox"): with gr.TabItem('Settings'): with gr.Column(variant='panel'): is_still_mode = gr.Checkbox(label="w/ Still Mode (fewer hand motion)") enhancer = gr.Checkbox(label="w/ GFPGAN as Face enhancer") submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary') with gr.Tabs(elem_id="sadtalker_genearted"): gen_video = gr.Video(label="Generated video", format="mp4").style(height=256,width=256) gen_text = gr.Textbox(visible=False) with gr.Row(): examples = [ [ 'examples/source_image/art_10.png', 'examples/driven_audio/deyu.wav', True, False ] ] gr.Examples(examples=examples, inputs=[ source_image, driven_audio, is_still_mode, enhancer, gr.Textbox(value=result_dir, visible=False)], outputs=[gen_video, gen_text], fn=sad_talker.test, cache_examples=os.getenv('SYSTEM') == 'spaces') submit.click( fn=sad_talker.test, inputs=[source_image, driven_audio, is_still_mode, enhancer, gr.Textbox(value=result_dir, visible=False)], outputs=[gen_video, gen_text] ) return sadtalker_interface if __name__ == "__main__": sadtalker_result_dir = os.path.join('./', 'results') demo = sadtalker_demo(sadtalker_result_dir) demo.launch()