Spaces:
Runtime error
Runtime error
vishal0719
commited on
Commit
β’
fc74c52
1
Parent(s):
bfed7dd
adding application file
Browse files- app.py +215 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""InfogenQA_langchain.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1ubmRCRQhU3K16iDYgBcJ4XMPRffvctaa
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Installing all required libraries
|
11 |
+
# Langchain - for buiding retrieval chains
|
12 |
+
# faiss-gpu - for performing similarity search on GPUs
|
13 |
+
# sentence_transformers - pre-trained sentence embeddings for understanding semantics
|
14 |
+
|
15 |
+
# Install required libraries
|
16 |
+
# !pip install -qU transformers accelerate einops langchain xformers bitsandbytes faiss-gpu sentence_transformers
|
17 |
+
# !pip install gradio
|
18 |
+
|
19 |
+
# For handling UTF-8 locale error
|
20 |
+
import locale
|
21 |
+
def getpreferredencoding(do_setlocale = True):
|
22 |
+
return "UTF-8"
|
23 |
+
locale.getpreferredencoding = getpreferredencoding
|
24 |
+
|
25 |
+
from torch import cuda, bfloat16
|
26 |
+
import transformers
|
27 |
+
|
28 |
+
# Model used
|
29 |
+
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
30 |
+
|
31 |
+
# Detects available device (GPU or CPU)
|
32 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
33 |
+
|
34 |
+
# set quantization configuration to load large model with less GPU memory
|
35 |
+
# this requires the `bitsandbytes` library
|
36 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
37 |
+
load_in_4bit=True,
|
38 |
+
bnb_4bit_quant_type='nf4',
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_compute_dtype=bfloat16
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
# Downloading and parsing model's configuration from HF
|
45 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
46 |
+
model_id,
|
47 |
+
use_auth_token=hf_auth
|
48 |
+
)
|
49 |
+
|
50 |
+
# Downloading and Initializing the model
|
51 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
trust_remote_code=True,
|
54 |
+
config=model_config,
|
55 |
+
quantization_config=bnb_config,
|
56 |
+
device_map='auto',
|
57 |
+
use_auth_token=hf_auth
|
58 |
+
)
|
59 |
+
|
60 |
+
# enable evaluation mode to allow model inference
|
61 |
+
model.eval()
|
62 |
+
|
63 |
+
print(f"Model loaded on {device}")
|
64 |
+
|
65 |
+
# Initialize tokenization process for Llama-2
|
66 |
+
# used to process text into LLM compatible format
|
67 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
68 |
+
model_id,
|
69 |
+
use_auth_token=hf_auth
|
70 |
+
)
|
71 |
+
|
72 |
+
# Defining strings to be treated as 'stop tokens' during text generation
|
73 |
+
stop_list = ['\nHuman:', '\n```\n']
|
74 |
+
|
75 |
+
# Converting stop tokens to their corresponding numerical token IDs
|
76 |
+
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
77 |
+
stop_token_ids
|
78 |
+
|
79 |
+
import torch
|
80 |
+
|
81 |
+
# Converitng stop_token_ids into long tensors (64-bit) and load into selected device
|
82 |
+
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
83 |
+
stop_token_ids
|
84 |
+
|
85 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
86 |
+
|
87 |
+
# define custom stopping criteria object
|
88 |
+
# Allows us to check whether the generated text contains stop_token_ids
|
89 |
+
class StopOnTokens(StoppingCriteria):
|
90 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
91 |
+
for stop_ids in stop_token_ids:
|
92 |
+
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
93 |
+
return True
|
94 |
+
return False
|
95 |
+
|
96 |
+
# Defining a list of stopping criteria
|
97 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
98 |
+
|
99 |
+
# Function to generate text using Llama
|
100 |
+
|
101 |
+
generate_text = transformers.pipeline(
|
102 |
+
model=model,
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
return_full_text=True, # langchain expects the full text
|
105 |
+
task='text-generation',
|
106 |
+
# we pass model parameters here too
|
107 |
+
stopping_criteria=stopping_criteria, # without this model rambles during chat
|
108 |
+
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
109 |
+
max_new_tokens=512, # max number of tokens to generate in the output
|
110 |
+
repetition_penalty=1.1 # without this output begins repeating
|
111 |
+
)
|
112 |
+
|
113 |
+
# Checking whether it is able to generate text or not
|
114 |
+
from langchain.llms import HuggingFacePipeline
|
115 |
+
|
116 |
+
llm = HuggingFacePipeline(pipeline=generate_text)
|
117 |
+
|
118 |
+
llm(prompt="Who is the CEO of Infogen Labs?")
|
119 |
+
|
120 |
+
# Importing WebBaseLoader class - used to load documents from web links
|
121 |
+
from langchain.document_loaders import WebBaseLoader
|
122 |
+
|
123 |
+
# A list containing web links from Infogen-Labs website
|
124 |
+
web_links = ["https://corp.infogen-labs.com/index.html",
|
125 |
+
"https://corp.infogen-labs.com/technology.html",
|
126 |
+
"https://corp.infogen-labs.com/EdTech.html",
|
127 |
+
"https://corp.infogen-labs.com/FinTech.html",
|
128 |
+
"https://corp.infogen-labs.com/retail.html",
|
129 |
+
"https://corp.infogen-labs.com/telecom.html",
|
130 |
+
"https://corp.infogen-labs.com/stud10.html",
|
131 |
+
"https://corp.infogen-labs.com/construction.html",
|
132 |
+
"https://corp.infogen-labs.com/RandD.html",
|
133 |
+
"https://corp.infogen-labs.com/microsoft.html",
|
134 |
+
"https://corp.infogen-labs.com/edge-technology.html",
|
135 |
+
"https://corp.infogen-labs.com/cloud-computing.html",
|
136 |
+
"https://corp.infogen-labs.com/uiux-studio.html",
|
137 |
+
"https://corp.infogen-labs.com/mobile-studio.html",
|
138 |
+
"https://corp.infogen-labs.com/qaqc-studio.html",
|
139 |
+
"https://corp.infogen-labs.com/platforms.html",
|
140 |
+
"https://corp.infogen-labs.com/about-us.html",
|
141 |
+
"https://corp.infogen-labs.com/career.html",
|
142 |
+
"https://corp.infogen-labs.com/contact-us.html"
|
143 |
+
]
|
144 |
+
|
145 |
+
# Fetch the content from web links and store the extracted text
|
146 |
+
loader = WebBaseLoader(web_links)
|
147 |
+
documents = loader.load()
|
148 |
+
|
149 |
+
# Splitting large text documents into smaller chunks for easier processing
|
150 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
151 |
+
|
152 |
+
# Specifying chunk size
|
153 |
+
# chunk_overlap allows some overlap between cuts to maintain context
|
154 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
155 |
+
# A lsit of splits from all the document
|
156 |
+
all_splits = text_splitter.split_documents(documents)
|
157 |
+
|
158 |
+
from langchain.embeddings import HuggingFaceEmbeddings # For numerical representation of the text
|
159 |
+
from langchain.vectorstores import FAISS # Similarity search in high-dimensional vector space
|
160 |
+
|
161 |
+
model_name = "sentence-transformers/all-mpnet-base-v2" # Embedding model
|
162 |
+
model_kwargs = {"device": "cuda"}
|
163 |
+
|
164 |
+
# used to generate embeddings from text
|
165 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
166 |
+
|
167 |
+
# storing embeddings in the vector store
|
168 |
+
vectorstore = FAISS.from_documents(all_splits, embeddings)
|
169 |
+
|
170 |
+
# Creating conversational agents that combine retrieval and generation capabilities
|
171 |
+
from langchain.chains import ConversationalRetrievalChain
|
172 |
+
|
173 |
+
# Creating a conversational retrieval chain by taking three arguments:
|
174 |
+
# LLM - for text generation
|
175 |
+
# converts FAISS vector store into a retriver object
|
176 |
+
# Also return the original source document to provide more context
|
177 |
+
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
178 |
+
|
179 |
+
# For demo purpose
|
180 |
+
# Storing chat history for asking follow up questions
|
181 |
+
# chat_history = []
|
182 |
+
|
183 |
+
# # Asking query
|
184 |
+
# query = "Who is the CEO of Infogen Labs?"
|
185 |
+
# result = chain({"question": query, "chat_history": chat_history})
|
186 |
+
|
187 |
+
# # Printing the result
|
188 |
+
# print(result['answer'])
|
189 |
+
|
190 |
+
# # Adding current question and generated answer
|
191 |
+
# chat_history.append((query, result["answer"]))
|
192 |
+
|
193 |
+
# # Printing source document from where the results were derived
|
194 |
+
# print(result['source_documents'])
|
195 |
+
|
196 |
+
import gradio as gr
|
197 |
+
|
198 |
+
def process_answer(answer):
|
199 |
+
answer = answer.replace('If you don\'t know the answer to this question, please say so.', '')
|
200 |
+
answer = answer.replace('Based on the information provided in the passage', 'Based on my current knowledge')
|
201 |
+
return answer
|
202 |
+
|
203 |
+
def generate_response(message, history):
|
204 |
+
chat_history = []
|
205 |
+
|
206 |
+
for val in history:
|
207 |
+
chat_history.append(tuple(val))
|
208 |
+
|
209 |
+
result = chain({"question": message, "chat_history": chat_history})
|
210 |
+
response = process_answer(result['answer'])
|
211 |
+
|
212 |
+
return response
|
213 |
+
|
214 |
+
gr.ChatInterface(generate_response).launch()
|
215 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
einops
|
5 |
+
langchain
|
6 |
+
xformers
|
7 |
+
bitsandbytes
|
8 |
+
faiss-gpu
|
9 |
+
sentence_transformers
|
10 |
+
gradio
|