import os import sys import cv2 import base64 import gradio as gr import requests import numpy as np import configparser def run(file): in_image = cv2.imread(file) encode_img = cv2.imencode('.jpg', in_image)[1].tostring() encode_img = base64.encodebytes(encode_img) base64_img = str(encode_img, 'utf-8') backend_url = os.getenv('BACKEND_URL') url = f'{backend_url}/raster-to-vector-base64' payload = {'image': base64_img} image_request = requests.post(url, json=payload) out_img = image_request.json()['image'] out_json = image_request.json()['graph'] decode_img = base64.b64decode(out_img.split(',')[1]) decode_img = np.frombuffer(decode_img, dtype=np.uint8) out_img = cv2.imdecode(decode_img, flags=cv2.IMREAD_COLOR) return out_img, out_json with gr.Blocks() as demo: gr.Markdown( """ # Raster-To-Vector on Floor Plan images Please give me star if you like it and reach out to me to get on-premise solutions. For any inquiries or questions, please contact us [Whatsapp](https://wa.me/+14422295661) | [Telegram](https://t.me/kby-andy) | andywu@kby-ai.com """ ) with gr.TabItem("Floor Plan Recognition"): with gr.Row(): with gr.Column(): app_input = gr.Image(type='filepath') gr.Examples(['images/1.jpg', 'images/2.png', 'images/3.png', 'images/4.png'], inputs=app_input) start_button = gr.Button("Run") with gr.Column(): app_output = [gr.Image(type="numpy"), gr.JSON()] start_button.click(run, inputs=app_input, outputs=app_output) demo.launch()