Spaces:
Build error
Build error
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import os | |
import json | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput, logging | |
from animatelcm.models.embeddings import TimestepEmbedding, Timesteps | |
from .unet_blocks import ( | |
CrossAttnDownBlock3D, | |
CrossAttnUpBlock3D, | |
DownBlock3D, | |
UNetMidBlock3DCrossAttn, | |
UpBlock3D, | |
get_down_block, | |
get_up_block, | |
) | |
from .resnet import InflatedConv3d, InflatedGroupNorm | |
# from .adapter import Adapter, PixelAdapter # Not ready | |
from einops import repeat | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNet3DConditionOutput(BaseOutput): | |
sample: torch.FloatTensor | |
class UNet3DConditionModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D", | |
), | |
mid_block_type: str = "UNetMidBlock3DCrossAttn", | |
up_block_types: Tuple[str] = ( | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D" | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
use_inflated_groupnorm=False, | |
# Additional | |
use_motion_module=False, | |
use_motion_resnet=False, | |
motion_module_resolutions=(1, 2, 4, 8), | |
motion_module_mid_block=False, | |
motion_module_decoder_only=False, | |
motion_module_type=None, | |
motion_module_kwargs={}, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
time_cond_proj_dim=None, # not ready | |
use_img_encoder=False, | |
use_pixel_encoder=False, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
self.img_encoder = None if use_img_encoder else None # not ready | |
self.pixel_encoder = None if use_pixel_encoder else None # not ready | |
# input | |
self.conv_in = InflatedConv3d( | |
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
# time | |
self.time_proj = Timesteps( | |
block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim, time_cond_proj_dim=time_cond_proj_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding( | |
num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [ | |
only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
res = 2 ** i | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module and ( | |
res in motion_module_resolutions) and (not motion_module_decoder_only), | |
use_motion_resnet=use_motion_resnet and ( | |
res in motion_module_resolutions) and (not motion_module_decoder_only), | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock3DCrossAttn": | |
self.mid_block = UNetMidBlock3DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module and motion_module_mid_block, | |
use_motion_resnet=use_motion_resnet and motion_module_mid_block, | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the videos | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
res = 2 ** (3 - i) | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min( | |
i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
use_inflated_groupnorm=use_inflated_groupnorm, | |
use_motion_module=use_motion_module and ( | |
res in motion_module_resolutions), | |
use_motion_resnet=use_motion_resnet and ( | |
res in motion_module_resolutions), | |
motion_module_type=motion_module_type, | |
motion_module_kwargs=motion_module_kwargs, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if use_inflated_groupnorm: | |
self.conv_norm_out = InflatedGroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
else: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = InflatedConv3d( | |
block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_slicable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_slicable_dims(module) | |
num_slicable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_slicable_layers * [1] | |
slice_size = num_slicable_layers * \ | |
[slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError( | |
f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
img_latent: torch.FloatTensor = None, | |
control: torch.FloatTensor = None, | |
time_cond: torch.FloatTensor = None, # not ready | |
class_labels: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
) -> Union[UNet3DConditionOutput, Tuple]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
if img_latent is not None and self.img_encoder is not None: | |
f = sample.shape[2] | |
img_latent = repeat(img_latent, "b c h w -> b c f h w", | |
f=f) if img_latent.ndim == 4 else img_latent | |
img_features = self.img_encoder(img_latent) | |
else: | |
img_features = None | |
if control is not None and self.pixel_encoder is not None: | |
ctrl_features = self.pixel_encoder(control) | |
else: | |
# assert 0 | |
ctrl_features = None | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info( | |
"Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor( | |
[timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError( | |
"class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# pre-process | |
sample = self.conv_in(sample) | |
# down | |
down_block_res_samples = (sample,) | |
img_feature_idx = 0 | |
for downsample_block in self.down_blocks: | |
added_feature = img_features[img_feature_idx] if img_features is not None else torch.tensor( | |
0.).to(sample.device, sample.dtype) | |
added_feature = added_feature + \ | |
ctrl_features[img_feature_idx] if ctrl_features is not None else added_feature | |
added_feature = None if added_feature.abs().mean() == 0 else added_feature | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
img_feature=added_feature | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, img_feature=added_feature) | |
down_block_res_samples += res_samples | |
img_feature_idx += 1 | |
# mid | |
sample = self.mid_block( | |
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
) | |
# up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets):] | |
down_block_res_samples = down_block_res_samples[: -len( | |
upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, | |
) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet3DConditionOutput(sample=sample) | |
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join( | |
pretrained_model_path, subfolder) | |
print( | |
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
config["_class_name"] = cls.__name__ | |
config["down_block_types"] = [ | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlock3D" | |
] | |
config["up_block_types"] = [ | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D" | |
] | |
from diffusers.utils import WEIGHTS_NAME | |
model = cls.from_config(config, **unet_additional_kwargs) | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
if not os.path.isfile(model_file): | |
raise RuntimeError(f"{model_file} does not exist") | |
state_dict = torch.load(model_file, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
state_dict = {k.replace("module.", ""): v for k, | |
v in state_dict.items()} | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print("###load unet weights") | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
params = [p.numel() if "motion" in n else 0 for n, | |
p in model.named_parameters()] | |
print(f"### Temporal Module Parameters: {sum(params) / 1e6} M") | |
return model | |