|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"tiiuae/falcon-7b-instruct", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
low_cpu_mem_usage=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct") |
|
|
|
|
|
def generate_text(input_text): |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
attention_mask = torch.ones(input_ids.shape) |
|
|
|
output = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=200, |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(output_text) |
|
|
|
|
|
cleaned_output_text = output_text.replace(input_text, "") |
|
return cleaned_output_text |
|
|
|
|
|
text_generation_interface = gr.Interface( |
|
fn=generate_text, |
|
inputs=[ |
|
gr.inputs.Textbox(label="Input Text"), |
|
], |
|
outputs=gr.inputs.Textbox(label="Generated Text"), |
|
title="Falcon-7B Instruct", |
|
).launch() |
|
|