Spaces:
Runtime error
Runtime error
File size: 13,400 Bytes
4c9c42b d515943 4c9c42b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
from PIL import Image
from pathlib import Path
import scipy.interpolate
import torch
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm import tqdm
import numpy as np
import cv2
from stablevideo.implicit_neural_networks import IMLP
def load_video(folder: str, resize=(432, 768), num_frames=70):
resy, resx = resize
folder = Path(folder)
input_files = sorted(list(folder.glob("*.jpg")) + list(folder.glob("*.png")))[:num_frames]
video_tensor = torch.zeros((len(input_files), 3, resy, resx))
for i, file in enumerate(input_files):
video_tensor[i] = transforms.ToTensor()(Image.open(str(file)).resize((resx, resy), Image.LANCZOS))
return video_tensor
def load_neural_atlases_models(config):
foreground_mapping = IMLP(
input_dim=3,
output_dim=2,
hidden_dim=256,
use_positional=False,
num_layers=6,
skip_layers=[],
).to(config["device"])
background_mapping = IMLP(
input_dim=3,
output_dim=2,
hidden_dim=256,
use_positional=False,
num_layers=4,
skip_layers=[],
).to(config["device"])
foreground_atlas_model = IMLP(
input_dim=2,
output_dim=3,
hidden_dim=256,
use_positional=True,
positional_dim=10,
num_layers=8,
skip_layers=[4, 7],
).to(config["device"])
background_atlas_model = IMLP(
input_dim=2,
output_dim=3,
hidden_dim=256,
use_positional=True,
positional_dim=10,
num_layers=8,
skip_layers=[4, 7],
).to(config["device"])
alpha_model = IMLP(
input_dim=3,
output_dim=1,
hidden_dim=256,
use_positional=True,
positional_dim=5,
num_layers=8,
skip_layers=[],
).to(config["device"])
checkpoint = torch.load(config["checkpoint_path"], map_location=torch.device('cpu'))
foreground_mapping.load_state_dict(checkpoint["model_F_mapping1_state_dict"])
background_mapping.load_state_dict(checkpoint["model_F_mapping2_state_dict"])
foreground_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
background_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
alpha_model.load_state_dict(checkpoint["model_F_alpha_state_dict"])
foreground_mapping = foreground_mapping.eval().requires_grad_(False)
background_mapping = background_mapping.eval().requires_grad_(False)
foreground_atlas_model = foreground_atlas_model.eval().requires_grad_(False)
background_atlas_model = background_atlas_model.eval().requires_grad_(False)
alpha_model = alpha_model.eval().requires_grad_(False)
return foreground_mapping, background_mapping, foreground_atlas_model, background_atlas_model, alpha_model
@torch.no_grad()
def get_frames_data(config, foreground_mapping, background_mapping, alpha_model):
max_size = max(config["resx"], config["resy"])
normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
background_uv_values = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
)
foreground_uv_values = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
)
alpha = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 1), device=config["device"]
)
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))
normalized_chunk = (indices / normalizing_factor - 1).to(config["device"])
# get the atlas UV coordinates from the two mapping networks;
with torch.no_grad():
current_background_uv_values = background_mapping(normalized_chunk)
current_foreground_uv_values = foreground_mapping(normalized_chunk)
current_alpha = alpha_model(normalized_chunk)
background_uv_values[frame, indices[:, 1], indices[:, 0]] = current_background_uv_values * 0.5 - 0.5
foreground_uv_values[frame, indices[:, 1], indices[:, 0]] = current_foreground_uv_values * 0.5 + 0.5
current_alpha = 0.5 * (current_alpha + 1.0)
current_alpha = 0.99 * current_alpha + 0.001
alpha[frame, indices[:, 1], indices[:, 0]] = current_alpha
# config["return_atlas_alpha"] = True
if config["return_atlas_alpha"]: # this should take a few minutes
foreground_atlas_alpha = torch.zeros(
size=(
config["maximum_number_of_frames"],
config["grid_atlas_resolution"],
config["grid_atlas_resolution"],
1,
),
)
# foreground_uv_values: 70 x 432 x 768 x 2
foreground_uv_values_grid = foreground_uv_values * config["grid_atlas_resolution"]
# indices: 4000000 x 2
indices = get_grid_indices(0, 0, config["grid_atlas_resolution"], config["grid_atlas_resolution"])
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
interpolated = scipy.interpolate.griddata(
foreground_uv_values_grid[frame].reshape(-1, 2).cpu().numpy(), # 432 x 768 x 2 -> -1 x 2
alpha[frame]
.reshape(
-1,
)
.cpu()
.numpy(),
indices.reshape(-1, 2).cpu().numpy(),
method="linear",
).reshape(config["grid_atlas_resolution"], config["grid_atlas_resolution"], 1)
foreground_atlas_alpha[frame] = torch.from_numpy(interpolated)
foreground_atlas_alpha[foreground_atlas_alpha.isnan()] = 0.0
foreground_atlas_alpha = (
torch.median(foreground_atlas_alpha, dim=0, keepdim=True).values.to(config["device"]).permute(0, 3, 2, 1)
)
else:
foreground_atlas_alpha = None
return background_uv_values, foreground_uv_values, alpha.permute(0, 3, 1, 2), foreground_atlas_alpha
@torch.no_grad()
def reconstruct_video_layer(uv_values, atlas_model):
t, h, w, _ = uv_values.shape
reconstruction = torch.zeros(size=(t, h, w, 3), device=uv_values.device)
for frame in range(t):
rgb = (atlas_model(uv_values[frame].reshape(-1, 2)) + 1) * 0.5
reconstruction[frame] = rgb.reshape(h, w, 3)
return reconstruction.permute(0, 3, 1, 2)
@torch.no_grad()
def create_uv_mask(config, mapping_model, min_u, min_v, max_u, max_v, uv_shift=-0.5, resolution_shift=1):
max_size = max(config["resx"], config["resy"])
normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
resolution = config["grid_atlas_resolution"]
uv_mask = torch.zeros(size=(resolution, resolution), device=config["device"])
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))
for chunk in indices.split(50000, dim=0):
normalized_chunk = (chunk / normalizing_factor - 1).to(config["device"])
# get the atlas UV coordinates from the two mapping networks;
with torch.no_grad():
uv_values = mapping_model(normalized_chunk)
uv_values = uv_values * 0.5 + uv_shift
uv_values = ((uv_values + resolution_shift) * resolution).clip(0, resolution - 1)
uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].floor().long()] = 1
uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].ceil().long()] = 1
uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].floor().long()] = 1
uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].ceil().long()] = 1
uv_mask = crop(uv_mask.unsqueeze(0).unsqueeze(0), min_v, min_u, max_v, max_u)
return uv_mask.detach().cpu() # shape [1, 1, resolution, resolution]
@torch.no_grad()
def get_high_res_atlas(atlas_model, min_v, min_u, max_v, max_u, resolution, device="cuda", layer="background"):
inds_grid = get_grid_indices(0, 0, resolution, resolution)
inds_grid_chunks = inds_grid.split(50000, dim=0)
if layer == "background":
shift = -1
else:
shift = 0
rendered_atlas = torch.zeros((resolution, resolution, 3)).to(device) # resy, resx, 3
with torch.no_grad():
# reconstruct image row by row
for chunk in inds_grid_chunks:
normalized_chunk = torch.stack(
[
(chunk[:, 0] / resolution) + shift,
(chunk[:, 1] / resolution) + shift,
],
dim=-1,
).to(device)
rgb_output = atlas_model(normalized_chunk)
rendered_atlas[chunk[:, 1], chunk[:, 0], :] = rgb_output
# move colors to RGB color domain (0,1)
rendered_atlas = 0.5 * (rendered_atlas + 1)
rendered_atlas = rendered_atlas.permute(2, 0, 1).unsqueeze(0) # shape (1, 3, resy, resx)
cropped_atlas = crop(
rendered_atlas,
min_v,
min_u,
max_v,
max_u,
)
return cropped_atlas
def get_grid_indices(x_start, y_start, h_crop, w_crop, t=None):
crop_indices = torch.meshgrid(torch.arange(w_crop) + x_start, torch.arange(h_crop) + y_start)
crop_indices = torch.stack(crop_indices, dim=-1)
crop_indices = crop_indices.reshape(h_crop * w_crop, crop_indices.shape[-1])
if t is not None:
crop_indices = torch.cat([crop_indices, t.repeat(h_crop * w_crop, 1)], dim=1)
return crop_indices
def get_atlas_crops(uv_values, grid_atlas, augmentation=None):
if len(uv_values.shape) == 3:
dims = [0, 1]
elif len(uv_values.shape) == 4:
dims = [0, 1, 2]
else:
raise ValueError("uv_values should be of shape of len 3 or 4")
min_u, min_v = uv_values.amin(dim=dims).long()
max_u, max_v = uv_values.amax(dim=dims).ceil().long()
# min_u, min_v = uv_values.min(dim=0).values
# max_u, max_v = uv_values.max(dim=0).values
h_v = max_v - min_v
w_u = max_u - min_u
atlas_crop = crop(grid_atlas, min_v, min_u, h_v, w_u)
if augmentation is not None:
atlas_crop = augmentation(atlas_crop)
return atlas_crop, torch.stack([min_u, min_v]), torch.stack([max_u, max_v])
def get_random_crop_params(input_size, output_size):
w, h = input_size
th, tw = output_size
if h + 1 < th or w + 1 < tw:
raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")
if w == tw and h == th:
return 0, 0, h, w
i = torch.randint(0, h - th + 1, size=(1,)).item()
j = torch.randint(0, w - tw + 1, size=(1,)).item()
return i, j, th, tw
def get_masks_boundaries(alpha_video, border=20, threshold=0.95, min_crop_size=2 ** 7 + 1):
resy, resx = alpha_video.shape[-2:]
num_frames = alpha_video.shape[0]
masks_borders = torch.zeros((num_frames, 4), dtype=torch.int64)
for i, file in enumerate(range(num_frames)):
mask_im = alpha_video[i]
mask_im[mask_im >= threshold] = 1
mask_im[mask_im < threshold] = 0
all_ones = mask_im.squeeze().nonzero()
min_y, min_x = torch.maximum(all_ones.min(dim=0).values - border, torch.tensor([0, 0]))
max_y, max_x = torch.minimum(all_ones.max(dim=0).values + border, torch.tensor([resy, resx]))
h = max_y - min_y
w = max_x - min_x
if h < min_crop_size:
pad = min_crop_size - h
if max_y + pad > resy:
min_y -= pad
else:
max_y += pad
h = max_y - min_y
if w < min_crop_size:
pad = min_crop_size - w
if max_x + pad > resx:
min_x -= pad
else:
max_x += pad
w = max_x - min_x
masks_borders[i] = torch.tensor([min_y, min_x, h, w])
return masks_borders
def get_atlas_bounding_box(mask_boundaries, grid_atlas, video_uvs):
min_uv = torch.tensor(grid_atlas.shape[-2:], device=video_uvs.device)
max_uv = torch.tensor([0, 0], device=video_uvs.device)
for boundary, frame in zip(mask_boundaries, video_uvs):
cropped_uvs = crop(frame.permute(2, 0, 1).unsqueeze(0), *list(boundary)) # 1,2,h,w
min_uv = torch.minimum(cropped_uvs.amin(dim=[0, 2, 3]), min_uv).floor().int()
max_uv = torch.maximum(cropped_uvs.amax(dim=[0, 2, 3]), max_uv).ceil().int()
hw = max_uv - min_uv
crop_data = [*list(min_uv)[::-1], *list(hw)[::-1]]
return crop(grid_atlas, *crop_data), crop_data
def tensor2im(input_image, imtype=np.uint8):
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype) |