|
from transformers import CLIPTextModel, CLIPTokenizer, logging |
|
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler |
|
|
|
|
|
logging.set_verbosity_error() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as T |
|
import argparse |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def seed_everything(seed): |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
|
|
|
|
|
|
|
|
def get_views(panorama_height, panorama_width, window_size=64, stride=8): |
|
panorama_height /= 8 |
|
panorama_width /= 8 |
|
num_blocks_height = (panorama_height - window_size) // stride + 1 |
|
num_blocks_width = (panorama_width - window_size) // stride + 1 |
|
total_num_blocks = int(num_blocks_height * num_blocks_width) |
|
views = [] |
|
for i in range(total_num_blocks): |
|
h_start = int((i // num_blocks_width) * stride) |
|
h_end = h_start + window_size |
|
w_start = int((i % num_blocks_width) * stride) |
|
w_end = w_start + window_size |
|
views.append((h_start, h_end, w_start, w_end)) |
|
return views |
|
|
|
|
|
class MultiDiffusion(nn.Module): |
|
def __init__(self, device, sd_version='2.0', hf_key=None): |
|
super().__init__() |
|
|
|
self.device = device |
|
self.sd_version = sd_version |
|
|
|
print(f'[INFO] loading stable diffusion...') |
|
if hf_key is not None: |
|
print(f'[INFO] using hugging face custom model key: {hf_key}') |
|
model_key = hf_key |
|
elif self.sd_version == '2.1': |
|
model_key = "stabilityai/stable-diffusion-2-1-base" |
|
elif self.sd_version == '2.0': |
|
model_key = "stabilityai/stable-diffusion-2-base" |
|
elif self.sd_version == '1.5': |
|
model_key = "runwayml/stable-diffusion-v1-5" |
|
else: |
|
model_key = self.sd_version |
|
|
|
|
|
|
|
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae").to(self.device) |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device) |
|
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet").to(self.device) |
|
|
|
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler") |
|
|
|
print(f'[INFO] loaded stable diffusion!') |
|
|
|
@torch.no_grad() |
|
def get_random_background(self, n_samples): |
|
|
|
backgrounds = torch.rand(n_samples, 3, device=self.device)[:, :, None, None].repeat(1, 1, 512, 512) |
|
return torch.cat([self.encode_imgs(bg.unsqueeze(0)) for bg in backgrounds]) |
|
|
|
@torch.no_grad() |
|
def get_text_embeds(self, prompt, negative_prompt): |
|
|
|
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, |
|
truncation=True, return_tensors='pt') |
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] |
|
|
|
|
|
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, |
|
return_tensors='pt') |
|
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
return text_embeddings |
|
|
|
@torch.no_grad() |
|
def encode_imgs(self, imgs): |
|
imgs = 2 * imgs - 1 |
|
posterior = self.vae.encode(imgs).latent_dist |
|
latents = posterior.sample() * 0.18215 |
|
return latents |
|
|
|
@torch.no_grad() |
|
def decode_latents(self, latents): |
|
latents = 1 / 0.18215 * latents |
|
imgs = self.vae.decode(latents).sample |
|
imgs = (imgs / 2 + 0.5).clamp(0, 1) |
|
return imgs |
|
|
|
@torch.no_grad() |
|
def generate(self, masks, prompts, negative_prompts='', height=512, width=2048, num_inference_steps=50, |
|
guidance_scale=7.5, bootstrapping=20): |
|
|
|
|
|
|
|
bootstrapping_backgrounds = self.get_random_background(bootstrapping) |
|
|
|
|
|
text_embeds = self.get_text_embeds(prompts, negative_prompts) |
|
|
|
|
|
latent = torch.randn((1, self.unet.in_channels, height // 8, width // 8), device=self.device) |
|
noise = latent.clone().repeat(len(prompts) - 1, 1, 1, 1) |
|
views = get_views(height, width) |
|
count = torch.zeros_like(latent) |
|
value = torch.zeros_like(latent) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
with torch.autocast('cuda'): |
|
for i, t in enumerate(self.scheduler.timesteps): |
|
count.zero_() |
|
value.zero_() |
|
|
|
for h_start, h_end, w_start, w_end in views: |
|
masks_view = masks[:, :, h_start:h_end, w_start:w_end] |
|
latent_view = latent[:, :, h_start:h_end, w_start:w_end].repeat(len(prompts), 1, 1, 1) |
|
if i < bootstrapping: |
|
bg = bootstrapping_backgrounds[torch.randint(0, bootstrapping, (len(prompts) - 1,))] |
|
bg = self.scheduler.add_noise(bg, noise[:, :, h_start:h_end, w_start:w_end], t) |
|
latent_view[1:] = latent_view[1:] * masks_view[1:] + bg * (1 - masks_view[1:]) |
|
|
|
|
|
latent_model_input = torch.cat([latent_view] * 2) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample'] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents_view_denoised = self.scheduler.step(noise_pred, t, latent_view)['prev_sample'] |
|
|
|
value[:, :, h_start:h_end, w_start:w_end] += (latents_view_denoised * masks_view).sum(dim=0, |
|
keepdims=True) |
|
count[:, :, h_start:h_end, w_start:w_end] += masks_view.sum(dim=0, keepdims=True) |
|
|
|
|
|
latent = torch.where(count > 0, value / count, value) |
|
|
|
|
|
imgs = self.decode_latents(latent) |
|
img = T.ToPILImage()(imgs[0].cpu()) |
|
return img |
|
|
|
|
|
def preprocess_mask(mask_path, h, w, device): |
|
mask = np.array(Image.open(mask_path).convert("L")) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask = mask[None, None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask).to(device) |
|
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest') |
|
return mask |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--mask_paths', type=list) |
|
parser.add_argument('--bg_prompt', type=str) |
|
parser.add_argument('--bg_negative', type=str) |
|
parser.add_argument('--fg_prompts', type=list) |
|
parser.add_argument('--fg_negative', type=list) |
|
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'], |
|
help="stable diffusion version") |
|
parser.add_argument('--H', type=int, default=768) |
|
parser.add_argument('--W', type=int, default=512) |
|
parser.add_argument('--seed', type=int, default=0) |
|
parser.add_argument('--steps', type=int, default=50) |
|
parser.add_argument('--bootstrapping', type=int, default=20) |
|
opt = parser.parse_args() |
|
|
|
seed_everything(opt.seed) |
|
|
|
device = torch.device('cuda') |
|
|
|
sd = MultiDiffusion(device, opt.sd_version) |
|
|
|
fg_masks = torch.cat([preprocess_mask(mask_path, opt.H // 8, opt.W // 8, device) for mask_path in opt.mask_paths]) |
|
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) |
|
bg_mask[bg_mask < 0] = 0 |
|
masks = torch.cat([bg_mask, fg_masks]) |
|
|
|
prompts = [opt.bg_prompt] + opt.fg_prompts |
|
neg_prompts = [opt.bg_negative] + opt.fg_negative |
|
|
|
img = sd.generate(masks, prompts, neg_prompts, opt.H, opt.W, opt.steps, bootstrapping=opt.bootstrapping) |
|
|
|
|
|
img.save('out.png') |
|
|