|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from skimage.color import rgb2lab |
|
from skimage.color import lab2rgb |
|
from sklearn.cluster import KMeans |
|
|
|
def color_quantization(image, n_colors): |
|
|
|
lab_image = rgb2lab(image) |
|
|
|
pixels = lab_image.reshape(-1, 3) |
|
|
|
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(pixels) |
|
|
|
labels = kmeans.predict(pixels) |
|
colors = kmeans.cluster_centers_ |
|
quantized_pixels = colors[labels] |
|
|
|
quantized_lab_image = quantized_pixels.reshape(lab_image.shape) |
|
quantized_rgb_image = lab2rgb(quantized_lab_image) |
|
return (quantized_rgb_image * 255).astype(np.uint8) |
|
|
|
def get_high_freq_colors(image): |
|
im = image.getcolors(maxcolors=1024*1024) |
|
sorted_colors = sorted(im, key=lambda x: x[0], reverse=True) |
|
|
|
freqs = [c[0] for c in sorted_colors] |
|
mean_freq = sum(freqs) / len(freqs) |
|
|
|
high_freq_colors = [c for c in sorted_colors if c[0] > max(2, mean_freq)] |
|
return high_freq_colors |
|
|
|
def color_quantization_old(image, n_colors): |
|
|
|
hist, _ = np.histogramdd(image.reshape(-1, 3), bins=(256, 256, 256), range=((0, 256), (0, 256), (0, 256))) |
|
|
|
colors = np.argwhere(hist > 0) |
|
colors = colors[np.argsort(hist[colors[:, 0], colors[:, 1], colors[:, 2]])[::-1]] |
|
colors = colors[:n_colors] |
|
|
|
dists = np.sum((image.reshape(-1, 1, 3) - colors.reshape(1, -1, 3))**2, axis=2) |
|
labels = np.argmin(dists, axis=1) |
|
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8) |
|
|
|
def create_binary_matrix(img_arr, target_color): |
|
|
|
mask = np.all(img_arr == target_color, axis=-1) |
|
|
|
|
|
binary_matrix = mask.astype(int) |
|
from datetime import datetime |
|
binary_file_name = f'mask-{datetime.now().timestamp()}.png' |
|
cv2.imwrite(binary_file_name, binary_matrix * 255) |
|
|
|
|
|
return binary_file_name |