Commit
•
e889613
1
Parent(s):
95b841a
Update sketch_helper.py
Browse files- sketch_helper.py +19 -22
sketch_helper.py
CHANGED
@@ -1,7 +1,25 @@
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
from PIL import Image
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def get_high_freq_colors(image):
|
6 |
im = image.getcolors(maxcolors=1024*1024)
|
7 |
sorted_colors = sorted(im, key=lambda x: x[0], reverse=True)
|
@@ -24,27 +42,6 @@ def color_quantization_old(image, n_colors):
|
|
24 |
labels = np.argmin(dists, axis=1)
|
25 |
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8)
|
26 |
|
27 |
-
def color_quantization(image, n_colors=8, rounds=1):
|
28 |
-
h, w = image.shape[:2]
|
29 |
-
samples = np.zeros([h*w,3], dtype=np.float32)
|
30 |
-
count = 0
|
31 |
-
|
32 |
-
for x in range(h):
|
33 |
-
for y in range(w):
|
34 |
-
samples[count] = image[x][y]
|
35 |
-
count += 1
|
36 |
-
|
37 |
-
compactness, labels, centers = cv2.kmeans(samples,
|
38 |
-
n_colors,
|
39 |
-
None,
|
40 |
-
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001),
|
41 |
-
rounds,
|
42 |
-
cv2.KMEANS_RANDOM_CENTERS)
|
43 |
-
|
44 |
-
centers = np.uint8(centers)
|
45 |
-
res = centers[labels.flatten()]
|
46 |
-
return res.reshape((image.shape))
|
47 |
-
|
48 |
def create_binary_matrix(img_arr, target_color):
|
49 |
# Create mask of pixels with target color
|
50 |
mask = np.all(img_arr == target_color, axis=-1)
|
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
from PIL import Image
|
4 |
+
from skimage.color import rgb2lab
|
5 |
+
from skimage.color import lab2rgb
|
6 |
+
|
7 |
+
def color_quantization(image, n_colors):
|
8 |
+
# Convert image to LAB color space
|
9 |
+
lab_image = rgb2lab(image)
|
10 |
+
# Reshape image to 2D array of pixels
|
11 |
+
pixels = lab_image.reshape(-1, 3)
|
12 |
+
# Perform K-means clustering
|
13 |
+
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(pixels)
|
14 |
+
# Replace each pixel with the closest color
|
15 |
+
labels = kmeans.predict(pixels)
|
16 |
+
colors = kmeans.cluster_centers_
|
17 |
+
quantized_pixels = colors[labels]
|
18 |
+
# Convert quantized image back to RGB color space
|
19 |
+
quantized_lab_image = quantized_pixels.reshape(lab_image.shape)
|
20 |
+
quantized_rgb_image = lab2rgb(quantized_lab_image)
|
21 |
+
return (quantized_rgb_image * 255).astype(np.uint8)
|
22 |
+
|
23 |
def get_high_freq_colors(image):
|
24 |
im = image.getcolors(maxcolors=1024*1024)
|
25 |
sorted_colors = sorted(im, key=lambda x: x[0], reverse=True)
|
|
|
42 |
labels = np.argmin(dists, axis=1)
|
43 |
return colors[labels].reshape((image.shape[0], image.shape[1], 3)).astype(np.uint8)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def create_binary_matrix(img_arr, target_color):
|
46 |
# Create mask of pixels with target color
|
47 |
mask = np.all(img_arr == target_color, axis=-1)
|