File size: 23,156 Bytes
317822d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('cd GLEE/glee/models/pixel_decoder/ops && sh mask.sh')
# os.system('python -m pip install -e detectron2')
import gradio as gr
import numpy as np
import cv2
import torch
from detectron2.config import get_cfg
from GLEE.glee.models.glee_model import GLEE_Model
from GLEE.glee.config_deeplab import add_deeplab_config
from GLEE.glee.config import add_glee_config
import torch.nn.functional as F
import torchvision
import math
from obj365_name import categories as OBJ365_CATEGORIESV2
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def scribble2box(img):
if img.max()==0:
return None, None
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
all = np.any(img,axis=2)
R,G,B,A = img[np.where(all)[0][0],np.where(all)[1][0]].tolist() # get color
ymin, ymax = np.where(rows)[0][[0, -1]]
xmin, xmax = np.where(cols)[0][[0, -1]]
return np.array([ xmin,ymin, xmax,ymax]), (R,G,B)
def LSJ_box_postprocess( out_bbox, padding_size, crop_size, img_h, img_w):
# postprocess box height and width
boxes = box_cxcywh_to_xyxy(out_bbox)
lsj_sclae = torch.tensor([padding_size[1], padding_size[0], padding_size[1], padding_size[0]]).to(out_bbox)
crop_scale = torch.tensor([crop_size[1], crop_size[0], crop_size[1], crop_size[0]]).to(out_bbox)
boxes = boxes * lsj_sclae
boxes = boxes / crop_scale
boxes = torch.clamp(boxes,0,1)
scale_fct = torch.tensor([img_w, img_h, img_w, img_h])
scale_fct = scale_fct.to(out_bbox)
boxes = boxes * scale_fct
return boxes
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000],
[0.700, 0.300, 0.600],[0.000, 0.447, 0.741], [0.850, 0.325, 0.098]]
coco_class_name = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
OBJ365_class_names = [cat['name'] for cat in OBJ365_CATEGORIESV2]
class_agnostic_name = ['object']
if torch.cuda.is_available():
print('use cuda')
device = 'cuda'
else:
print('use cpu')
device='cpu'
cfg_r50 = get_cfg()
add_deeplab_config(cfg_r50)
add_glee_config(cfg_r50)
conf_files_r50 = 'GLEE/configs/R50.yaml'
checkpoints_r50 = torch.load('GLEE_R50_Scaleup10m.pth')
cfg_r50.merge_from_file(conf_files_r50)
GLEEmodel_r50 = GLEE_Model(cfg_r50, None, device, None, True).to(device)
GLEEmodel_r50.load_state_dict(checkpoints_r50, strict=False)
GLEEmodel_r50.eval()
cfg_swin = get_cfg()
add_deeplab_config(cfg_swin)
add_glee_config(cfg_swin)
conf_files_swin = 'GLEE/configs/SwinL.yaml'
checkpoints_swin = torch.load('GLEE_SwinL_Scaleup10m.pth')
cfg_swin.merge_from_file(conf_files_swin)
GLEEmodel_swin = GLEE_Model(cfg_swin, None, device, None, True).to(device)
GLEEmodel_swin.load_state_dict(checkpoints_swin, strict=False)
GLEEmodel_swin.eval()
pixel_mean = torch.Tensor( [123.675, 116.28, 103.53]).to(device).view(3, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).to(device).view(3, 1, 1)
normalizer = lambda x: (x - pixel_mean) / pixel_std
inference_size = 800
inference_type = 'resize_shot' # or LSJ
size_divisibility = 32
FONT_SCALE = 1.5e-3
THICKNESS_SCALE = 1e-3
TEXT_Y_OFFSET_SCALE = 1e-2
if inference_type != 'LSJ':
resizer = torchvision.transforms.Resize(inference_size)
def segment_image(img,prompt_mode, categoryname, custom_category, expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration, model_selection):
if model_selection == 'GLEE-Plus (SwinL)':
GLEEmodel = GLEEmodel_swin
print('use GLEE-Plus')
else:
GLEEmodel = GLEEmodel_r50
print('use GLEE-Lite')
copyed_img = img['background'][:,:,:3].copy()
ori_image = torch.as_tensor(np.ascontiguousarray( copyed_img.transpose(2, 0, 1)))
ori_image = normalizer(ori_image.to(device))[None,]
_,_, ori_height, ori_width = ori_image.shape
if inference_type == 'LSJ':
infer_image = torch.zeros(1,3,1024,1024).to(ori_image)
infer_image[:,:,:inference_size,:inference_size] = ori_image
else:
resize_image = resizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
if size_divisibility > 1:
stride = size_divisibility
# the last two dims are H,W, both subject to divisibility requirement
padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist()
infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image)
infer_image[0,:,:image_size[0],:image_size[1]] = resize_image
# reversed_image = infer_image*pixel_std + pixel_mean
# reversed_image = torch.clip(reversed_image,min=0,max=255)
# reversed_image = reversed_image[0].permute(1,2,0)
# reversed_image = reversed_image.int().cpu().numpy().copy()
# cv2.imwrite('test.png',reversed_image[:,:,::-1])
if prompt_mode == 'categories' or prompt_mode == 'expression':
if len(results_select)==0:
results_select=['box']
if prompt_mode == 'categories':
if categoryname =="COCO-80":
batch_category_name = coco_class_name
elif categoryname =="OBJ365":
batch_category_name = OBJ365_class_names
elif categoryname =="Custom-List":
batch_category_name = custom_category.split(',')
else:
batch_category_name = class_agnostic_name
# mask_ori = torch.from_numpy(np.load('03_moto_mask.npy'))[None,]
# mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0).to(device)
# prompt_list = [mask_ori[0]]
prompt_list = []
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=batch_category_name, is_train=False)
topK_instance = max(num_inst_select,1)
else:
topK_instance = 1
prompt_list = {'grounding':[expressiong]}
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="grounding", batch_name_list=[], is_train=False)
mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
if prompt_mode == 'categories':
valid = scores_per_image>threshold_select
topk_indices = topk_indices[valid]
scores_per_image = scores_per_image[valid]
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]
if 'mask' in results_select:
zero_mask = np.zeros_like(copyed_img)
for nn, mask in enumerate(pred_masks):
# mask = mask.numpy()
mask = mask.reshape(mask.shape[0], mask.shape[1], 1)
lar = np.concatenate((mask*COLORS[nn%12][2], mask*COLORS[nn%12][1], mask*COLORS[nn%12][0]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,1)*255*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
else:
ret = copyed_img
if 'box' in results_select:
line_width = max(ret.shape) /200
for nn,(classid, box) in enumerate(zip(pred_class,boxes)):
x1,y1,x2,y2 = box.long().tolist()
RGB = (COLORS[nn%12][2]*255,COLORS[nn%12][1]*255,COLORS[nn%12][0]*255)
cv2.rectangle(ret, (x1,y1), (x2,y2), RGB, math.ceil(line_width) )
if prompt_mode == 'categories' or (prompt_mode == 'expression' and 'expression' in results_select ):
if prompt_mode == 'categories':
label = ''
if 'name' in results_select:
label += batch_category_name[classid]
if 'score' in results_select:
label += str(scores_per_image[nn].item())[:4]
else:
label = expressiong
if len(label)==0:
continue
height, width, _ = ret.shape
FONT = cv2.FONT_HERSHEY_COMPLEX
label_width, label_height = cv2.getTextSize(label, FONT, min(width, height) * FONT_SCALE, math.ceil(min(width, height) * THICKNESS_SCALE))[0]
cv2.rectangle(ret, (x1,y1), (x1+label_width,(y1 -label_height) - int(height * TEXT_Y_OFFSET_SCALE)), RGB, -1)
cv2.putText(
ret,
label,
(x1, y1 - int(height * TEXT_Y_OFFSET_SCALE)),
fontFace=FONT,
fontScale=min(width, height) * FONT_SCALE,
thickness=math.ceil(min(width, height) * THICKNESS_SCALE),
color=(255,255,255),
)
ret = ret.astype('uint8')
return ret
else: #visual prompt
topK_instance = 1
copyed_img = img['background'][:,:,:3].copy()
# get bbox from scribbles in layers
bbox_list = [scribble2box(layer) for layer in img['layers'] ]
visual_prompt_list = []
visual_prompt_RGB_list = []
for mask, (box,RGB) in zip(img['layers'], bbox_list):
if box is None:
continue
if prompt_mode=='box':
fakemask = np.zeros_like(copyed_img[:,:,0])
x1 ,y1 ,x2, y2 = box
fakemask[ y1:y2, x1:x2 ] = 1
fakemask = fakemask>0
elif prompt_mode=='point':
fakemask = np.zeros_like(copyed_img[:,:,0])
H,W = fakemask.shape
x1 ,y1 ,x2, y2 = box
center_x, center_y = (x1+x2)//2, (y1+y2)//2
fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1
fakemask = fakemask>0
elif prompt_mode=='scribble':
fakemask = mask[:,:,-1]
fakemask = fakemask>0
fakemask = torch.from_numpy(fakemask).unsqueeze(0).to(ori_image)
if inference_type == 'LSJ':
infer_visual_prompt = torch.zeros(1,1024,1024).to(ori_image)
infer_visual_prompt[:,:inference_size,:inference_size] = fakemask
else:
resize_fakemask = resizer(fakemask)
if size_divisibility > 1:
# the last two dims are H,W, both subject to divisibility requirement
infer_visual_prompt = torch.zeros(1,padding_size[0],padding_size[1]).to(resize_fakemask)
infer_visual_prompt[:,:image_size[0],:image_size[1]] = resize_fakemask
visual_prompt_list.append( infer_visual_prompt>0 )
visual_prompt_RGB_list.append(RGB)
mask_results_list = []
for visual_prompt in visual_prompt_list:
prompt_list = {'spatial':[visual_prompt]}
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=['object'], is_train=False, visual_prompt_type=prompt_mode )
mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]
mask_results_list.append(pred_masks)
zero_mask = np.zeros_like(copyed_img)
for mask,RGB in zip(mask_results_list,visual_prompt_RGB_list):
mask = mask.reshape(mask.shape[-2], mask.shape[-1], 1)
lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,255)*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
# cv2.imwrite('00020_inst.jpg', cv2.cvtColor(ret, cv2.COLOR_BGR2RGB))
return ret
# def get_select_coordinates(img):
# # img{'background': (H,W,3)
# # 'layers': list[ (H,W,4(RGBA)) ], draw map
# # 'composite': (H,W,4(RGBA))} ori_img concat drow
# ori_img = img['background'][:,:,:3].copy()
# # get bbox from scribbles in layers
# bbox_list = [scribble2box(layer) for layer in img['layers'] ]
# for mask, (box,RGB) in zip(img['layers'], bbox_list):
# if box is None:
# continue
# cv2.rectangle(ori_img, (box[0],box[1]), (box[2],box[3]),RGB, 3)
# return ori_img
def visual_prompt_preview(img, prompt_mode):
copyed_img = img['background'][:,:,:3].copy()
# get bbox from scribbles in layers
bbox_list = [scribble2box(layer) for layer in img['layers'] ]
zero_mask = np.zeros_like(copyed_img)
for mask, (box,RGB) in zip(img['layers'], bbox_list):
if box is None:
continue
if prompt_mode=='box':
fakemask = np.zeros_like(copyed_img[:,:,0])
x1 ,y1 ,x2, y2 = box
fakemask[ y1:y2, x1:x2 ] = 1
fakemask = fakemask>0
elif prompt_mode=='point':
fakemask = np.zeros_like(copyed_img[:,:,0])
H,W = fakemask.shape
x1 ,y1 ,x2, y2 = box
center_x, center_y = (x1+x2)//2, (y1+y2)//2
fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1
fakemask = fakemask>0
else:
fakemask = mask[:,:,-1]
fakemask = fakemask>0
mask = fakemask.reshape(fakemask.shape[0], fakemask.shape[1], 1)
lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2)
zero_mask = zero_mask+ lar
img_n = copyed_img + np.clip(zero_mask,0,255)
max_p = img_n.max()
ret = 255*img_n/max_p
ret = ret.astype('uint8')
return ret
with gr.Blocks() as demo:
gr.Markdown('# GLEE: General Object Foundation Model for Images and Videos at Scale')
gr.Markdown('## [Paper](https://arxiv.org/abs/2312.09158) - [Project Page](https://glee-vision.github.io) - [Code](https://github.com/FoundationVision/GLEE) ')
gr.Markdown(
'**The functionality demonstration demo app of GLEE. Select a Tab for image or video tasks. Image tasks includes arbitrary vocabulary object detection&segmentation, any form of object name or object caption detection, referring expression comprehension, and interactive segmentation. Video tasks add object tracking functionality based on image tasks.**'
)
with gr.Tab("Image task"):
with gr.Row():
with gr.Column():
img_input = gr.ImageEditor()
model_select = gr.Dropdown(
["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Plus (SwinL)" , multiselect=False, label="Model",
)
with gr.Row():
with gr.Column():
prompt_mode_select = gr.Radio(["point", "scribble", "box", "categories", "expression"], label="Prompt", value= "categories" , info="What kind of prompt do you want to use?")
category_select = gr.Dropdown(
["COCO-80", "OBJ365", "Custom-List", "Class-Agnostic"], value = "COCO-80" , multiselect=False, label="Categories", info="Choose an existing category list or class-agnostic"
)
custom_category = gr.Textbox(
label="Custom Category",
info="Input custom category list, seperate by ',' ",
lines=1,
value="dog, cat, car, person",
)
input_expressiong = gr.Textbox(
label="Expression",
info="Input any description of an object in the image ",
lines=2,
value="the red car",
)
# with gr.Column():
with gr.Group():
with gr.Accordion("Text based detection usage",open=False):
gr.Markdown(
'Press the "Detect & Segment" button directly to try the effect using the COCO category.<br />\
GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
)
with gr.Accordion("Interactive segmentation usage",open=False):
gr.Markdown(
'For interactive segmentation:<br />\
1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; use separate layers for different objects, adding layers with a "+" sign.<br />\
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
)
img_showbox = gr.Image(label="visual prompt area preview")
with gr.Column():
image_segment = gr.Image(label="detection and segmentation results")
with gr.Accordion("Try More Visualization Options"):
results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score"], label="Shown Results", info="The results shown on image")
num_inst_select = gr.Slider(1, 50, value=15, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization")
threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ")
mask_image_mix_ration = gr.Slider(0, 1, value=0.45, label="Image Brightness Ratio", info="Brightness between image and colored masks ")
image_button = gr.Button("Detect & Segment")
img_input.change(visual_prompt_preview, inputs = [img_input,prompt_mode_select] , outputs = img_showbox)
image_button.click(segment_image, inputs=[img_input, prompt_mode_select, category_select, custom_category,input_expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration,model_select], outputs=image_segment)
with gr.Tab("Video task"):
with gr.Row():
gr.Markdown(
'# Due to computational resource limitations, support for video tasks is being processed and is expected to be available within a week.'
)
video_input = gr.Image()
video_button = gr.Button("Segment&Track")
if __name__ == '__main__':
demo.launch(inbrowser=True,share=True)
|