File size: 20,267 Bytes
a43ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""

 Copyright (c) 2022, salesforce.com, inc.

 All rights reserved.

 SPDX-License-Identifier: BSD-3-Clause

 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

 

 Based on timm code base

 https://github.com/rwightman/pytorch-image-models/tree/master/timm

"""

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.vision_transformer import _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath
from timm.models.helpers import named_apply, adapt_input_conv

from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from lavis.models.base_model import BaseEncoder


class Mlp(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""

    def __init__(

        self,

        in_features,

        hidden_features=None,

        out_features=None,

        act_layer=nn.GELU,

        drop=0.0,

    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(

        self,

        dim,

        num_heads=8,

        qkv_bias=False,

        qk_scale=None,

        attn_drop=0.0,

        proj_drop=0.0,

    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim**-0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.attn_gradients = None
        self.attention_map = None

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def save_attention_map(self, attention_map):
        self.attention_map = attention_map

    def get_attention_map(self):
        return self.attention_map

    def forward(self, x, register_hook=False):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        if register_hook:
            self.save_attention_map(attn)
            attn.register_hook(self.save_attn_gradients)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(

        self,

        dim,

        num_heads,

        mlp_ratio=4.0,

        qkv_bias=False,

        qk_scale=None,

        drop=0.0,

        attn_drop=0.0,

        drop_path=0.0,

        act_layer=nn.GELU,

        norm_layer=nn.LayerNorm,

        use_grad_checkpointing=False,

    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

        if use_grad_checkpointing:
            self.attn = checkpoint_wrapper(self.attn)
            self.mlp = checkpoint_wrapper(self.mlp)

    def forward(self, x, register_hook=False):
        x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class VisionTransformer(nn.Module):
    """Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -

        https://arxiv.org/abs/2010.11929

    """

    def __init__(

        self,

        img_size=224,

        patch_size=16,

        in_chans=3,

        num_classes=1000,

        embed_dim=768,

        depth=12,

        num_heads=12,

        mlp_ratio=4.0,

        qkv_bias=True,

        qk_scale=None,

        representation_size=None,

        drop_rate=0.0,

        attn_drop_rate=0.0,

        drop_path_rate=0.0,

        norm_layer=None,

        use_grad_checkpointing=False,

        ckpt_layer=0,

    ):
        """

        Args:

            img_size (int, tuple): input image size

            patch_size (int, tuple): patch size

            in_chans (int): number of input channels

            num_classes (int): number of classes for classification head

            embed_dim (int): embedding dimension

            depth (int): depth of transformer

            num_heads (int): number of attention heads

            mlp_ratio (int): ratio of mlp hidden dim to embedding dim

            qkv_bias (bool): enable bias for qkv if True

            qk_scale (float): override default qk scale of head_dim ** -0.5 if set

            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set

            drop_rate (float): dropout rate

            attn_drop_rate (float): attention dropout rate

            drop_path_rate (float): stochastic depth rate

            norm_layer: (nn.Module): normalization layer

        """
        super().__init__()
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    use_grad_checkpointing=(
                        use_grad_checkpointing and i >= depth - ckpt_layer
                    ),
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        trunc_normal_(self.pos_embed, std=0.02)
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def forward(self, x, register_blk=-1):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(
            B, -1, -1
        )  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)

        x = x + self.pos_embed[:, : x.size(1), :]
        x = self.pos_drop(x)

        for i, blk in enumerate(self.blocks):
            x = blk(x, register_blk == i)
        x = self.norm(x)

        return x

    @torch.jit.ignore()
    def load_pretrained(self, checkpoint_path, prefix=""):
        _load_weights(self, checkpoint_path, prefix)


@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
    """Load weights from .npz checkpoints for official Google Brain Flax implementation"""
    import numpy as np

    def _n2p(w, t=True):
        if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
            w = w.flatten()
        if t:
            if w.ndim == 4:
                w = w.transpose([3, 2, 0, 1])
            elif w.ndim == 3:
                w = w.transpose([2, 0, 1])
            elif w.ndim == 2:
                w = w.transpose([1, 0])
        return torch.from_numpy(w)

    w = np.load(checkpoint_path)
    if not prefix and "opt/target/embedding/kernel" in w:
        prefix = "opt/target/"

    if hasattr(model.patch_embed, "backbone"):
        # hybrid
        backbone = model.patch_embed.backbone
        stem_only = not hasattr(backbone, "stem")
        stem = backbone if stem_only else backbone.stem
        stem.conv.weight.copy_(
            adapt_input_conv(
                stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
            )
        )
        stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
        stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
        if not stem_only:
            for i, stage in enumerate(backbone.stages):
                for j, block in enumerate(stage.blocks):
                    bp = f"{prefix}block{i + 1}/unit{j + 1}/"
                    for r in range(3):
                        getattr(block, f"conv{r + 1}").weight.copy_(
                            _n2p(w[f"{bp}conv{r + 1}/kernel"])
                        )
                        getattr(block, f"norm{r + 1}").weight.copy_(
                            _n2p(w[f"{bp}gn{r + 1}/scale"])
                        )
                        getattr(block, f"norm{r + 1}").bias.copy_(
                            _n2p(w[f"{bp}gn{r + 1}/bias"])
                        )
                    if block.downsample is not None:
                        block.downsample.conv.weight.copy_(
                            _n2p(w[f"{bp}conv_proj/kernel"])
                        )
                        block.downsample.norm.weight.copy_(
                            _n2p(w[f"{bp}gn_proj/scale"])
                        )
                        block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
        embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
    else:
        embed_conv_w = adapt_input_conv(
            model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
        )
    model.patch_embed.proj.weight.copy_(embed_conv_w)
    model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
    model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
    pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
    if pos_embed_w.shape != model.pos_embed.shape:
        pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
            pos_embed_w,
            model.pos_embed,
            getattr(model, "num_tokens", 1),
            model.patch_embed.grid_size,
        )
    model.pos_embed.copy_(pos_embed_w)
    model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
    model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
    #     if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
    #         model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
    #         model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
    #     if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
    #         model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
    #         model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
    for i, block in enumerate(model.blocks.children()):
        block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
        mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
        block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
        block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
        block.attn.qkv.weight.copy_(
            torch.cat(
                [
                    _n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
                    for n in ("query", "key", "value")
                ]
            )
        )
        block.attn.qkv.bias.copy_(
            torch.cat(
                [
                    _n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
                    for n in ("query", "key", "value")
                ]
            )
        )
        block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
        block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
        for r in range(2):
            getattr(block.mlp, f"fc{r + 1}").weight.copy_(
                _n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
            )
            getattr(block.mlp, f"fc{r + 1}").bias.copy_(
                _n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
            )
        block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
        block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))


def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape)
    ntok_new = posemb_new.shape[1]
    if num_tokens:
        posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
        ntok_new -= num_tokens
    else:
        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    if not len(gs_new):  # backwards compatibility
        gs_new = [int(math.sqrt(ntok_new))] * 2
    assert len(gs_new) >= 2
    print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new)
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(
        posemb_grid, size=gs_new, mode="bicubic", align_corners=False
    )
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
    return


def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
    # interpolate position embedding
    embedding_size = pos_embed_checkpoint.shape[-1]
    num_patches = visual_encoder.patch_embed.num_patches
    num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
    # height (== width) for the checkpoint position embedding
    orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
    # height (== width) for the new position embedding
    new_size = int(num_patches**0.5)

    if orig_size != new_size:
        # class_token and dist_token are kept unchanged
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(
            -1, orig_size, orig_size, embedding_size
        ).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
        )
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        print(
            "reshape position embedding from %d to %d" % (orig_size**2, new_size**2)
        )

        return new_pos_embed
    else:
        return pos_embed_checkpoint


class VisionTransformerEncoder(VisionTransformer, BaseEncoder):
    @classmethod
    def from_config(cls, cfg, from_pretrained=False):

        vit_type = cfg.get("vit_type", "base")
        image_size = cfg.get("image_size", 384)
        ckpt_layer = cfg.get("vit_ckpt_layer", 0)
        drop_path_rate = cfg.get("vit_drop_path_rate", 0)
        norm_layer_eps = cfg.get("vit_layer_norm_epsilon", -1)
        use_grad_checkpointing = cfg.get("vit_grad_ckpt", False)

        if norm_layer_eps == -1:
            norm_layer = None
        else:
            norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps)

        #     norm_layer=partial(nn.LayerNorm, eps=1e-6),
        assert vit_type in ["base", "large"], "vit parameter must be base or large"
        if vit_type == "base":
            vision_width = 768
            visual_encoder = cls(
                img_size=image_size,
                patch_size=16,
                embed_dim=vision_width,
                depth=12,
                num_heads=12,
                use_grad_checkpointing=use_grad_checkpointing,
                ckpt_layer=ckpt_layer,
                drop_path_rate=0 or drop_path_rate,
                norm_layer=norm_layer,
            )

            if from_pretrained:
                checkpoint = torch.hub.load_state_dict_from_url(
                    url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
                    map_location="cpu",
                    check_hash=True,
                )
                state_dict = checkpoint["model"]
                state_dict["pos_embed"] = interpolate_pos_embed(
                    state_dict["pos_embed"], visual_encoder
                )
                msg = visual_encoder.load_state_dict(state_dict, strict=False)

        elif vit_type == "large":
            vision_width = 1024
            visual_encoder = cls(
                img_size=image_size,
                patch_size=16,
                embed_dim=vision_width,
                depth=24,
                num_heads=16,
                use_grad_checkpointing=use_grad_checkpointing,
                ckpt_layer=ckpt_layer,
                drop_path_rate=0.1 or drop_path_rate,
                norm_layer=norm_layer,
            )
            if from_pretrained:
                from timm.models.helpers import load_custom_pretrained
                from timm.models.vision_transformer import default_cfgs

                load_custom_pretrained(
                    visual_encoder, default_cfgs["vit_large_patch16_224_in21k"]
                )

        visual_encoder.vision_width = vision_width
        return visual_encoder

    def forward_features(self, x, register_blk=-1):
        return super().forward(x, register_blk)