Spaces:
Sleeping
Sleeping
File size: 15,617 Bytes
c52280c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import argparse
import itertools
import json
import os
import time
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from fastprogress import master_bar, progress_bar
from torch.cuda.amp.grad_scaler import GradScaler
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from .meldataset import (LogMelSpectrogram, MelDataset, get_dataset_filelist,
mel_spectrogram)
from .models import (Generator, MultiPeriodDiscriminator,
MultiScaleDiscriminator, discriminator_loss, feature_loss,
generator_loss)
from .utils import (AttrDict, build_env, load_checkpoint, plot_spectrogram,
save_checkpoint, scan_checkpoint)
torch.backends.cudnn.benchmark = True
USE_ALT_MELCALC = True
def train(rank, a, h):
if h.num_gpus > 1:
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda:{:d}'.format(rank))
generator = Generator(h).to(device)
mpd = MultiPeriodDiscriminator().to(device)
msd = MultiScaleDiscriminator().to(device)
if rank == 0:
print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
mpd.load_state_dict(state_dict_do['mpd'])
msd.load_state_dict(state_dict_do['msd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
print(f"Restored checkpoint from {cp_g} and {cp_do}")
if h.num_gpus > 1:
print("Multi-gpu detected")
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
if a.fp16:
scaler_g = GradScaler()
scaler_d = GradScaler()
train_df, valid_df = get_dataset_filelist(a)
trainset = MelDataset(train_df, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
fine_tuning=a.fine_tuning,
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path,
use_alt_melcalc=USE_ALT_MELCALC)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
persistent_workers=True,
drop_last=True)
alt_melspec = LogMelSpectrogram(h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).to(device)
if rank == 0:
validset = MelDataset(valid_df, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path,
use_alt_melcalc=USE_ALT_MELCALC)
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
persistent_workers=True,
drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
generator.train()
mpd.train()
msd.train()
if rank == 0: mb = master_bar(range(max(0, last_epoch), a.training_epochs))
else: mb = range(max(0, last_epoch), a.training_epochs)
for epoch in mb:
if rank == 0:
start = time.time()
mb.write("Epoch: {}".format(epoch+1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
if rank == 0: pb = progress_bar(enumerate(train_loader), total=len(train_loader), parent=mb)
else: pb = enumerate(train_loader)
for i, batch in pb:
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
with torch.cuda.amp.autocast(enabled=a.fp16):
y_g_hat = generator(x)
if USE_ALT_MELCALC:
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
else:
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
# print(x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
optim_d.zero_grad()
with torch.cuda.amp.autocast(enabled=a.fp16):
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
if a.fp16:
scaler_d.scale(loss_disc_all).backward()
scaler_d.step(optim_d)
scaler_d.update()
else:
loss_disc_all.backward()
optim_d.step()
# Generator
optim_g.zero_grad()
with torch.cuda.amp.autocast(enabled=a.fp16):
# L1 Mel-Spectrogram Loss
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
if a.fp16:
scaler_g.scale(loss_gen_all).backward()
scaler_g.step(optim_g)
scaler_g.update()
else:
loss_gen_all.backward()
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
mb.write('Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, sec/batch : {:4.3f}, peak mem: {:5.2f}GB'. \
format(steps, loss_gen_all, mel_error, time.time() - start_b, torch.cuda.max_memory_allocated()/1e9))
mb.child.comment = "Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}". \
format(steps, loss_gen_all, mel_error)
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}.pt".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}.pt".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'mpd': (mpd.module if h.num_gpus > 1
else mpd).state_dict(),
'msd': (msd.module if h.num_gpus > 1
else msd).state_dict(),
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/disc_loss_total", loss_disc_all, steps)
# Validation
if steps % a.validation_interval == 0: # and steps != 0:
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
with torch.no_grad():
for j, batch in progress_bar(enumerate(validation_loader), total=len(validation_loader), parent=mb):
x, y, _, y_mel = batch
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
if USE_ALT_MELCALC:
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
if y_g_hat_mel.shape[-1] != y_mel.shape[-1]:
# pad it
n_pad = h.hop_size
y_g_hat = F.pad(y_g_hat, (n_pad//2, n_pad - n_pad//2))
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
else:
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
#print('valid', x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
if j <= 4:
if steps == 0:
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
if USE_ALT_MELCALC:
y_hat_spec = alt_melspec(y_g_hat.squeeze(1))
else:
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
sw.add_figure('generated/y_hat_spec_{}'.format(j),
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
val_err = val_err_tot / (j+1)
sw.add_scalar("validation/mel_spec_error", val_err, steps)
mb.write(f"validation run complete at {steps:,d} steps. validation mel spec error: {val_err:5.4f}")
generator.train()
sw.add_scalar("memory/max_allocated_gb", torch.cuda.max_memory_allocated()/1e9, steps)
sw.add_scalar("memory/max_reserved_gb", torch.cuda.max_memory_reserved()/1e9, steps)
torch.cuda.reset_peak_memory_stats()
torch.cuda.reset_accumulated_memory_stats()
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--audio_root_path', required=True)
parser.add_argument('--feature_root_path', required=True)
parser.add_argument('--input_training_file', default='LJSpeech-1.1/training.txt')
parser.add_argument('--input_validation_file', default='LJSpeech-1.1/validation.txt')
parser.add_argument('--checkpoint_path', default='cp_hifigan')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=1500, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=5000, type=int)
parser.add_argument('--summary_interval', default=25, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
parser.add_argument('--fp16', default=False, type=bool)
parser.add_argument('--fine_tuning', action='store_true')
a = parser.parse_args()
print(a)
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
else:
train(0, a, h)
if __name__ == '__main__':
main()
|