wetdog's picture
Inital demo
c52280c
import math
import os
import random
from pathlib import Path
import librosa
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from librosa.filters import mel as librosa_mel_fn
from librosa.util import normalize
from scipy.io.wavfile import read
def load_wav(full_path):
#sampling_rate, data = read(full_path)
#return data, sampling_rate
data, sampling_rate = librosa.load(full_path, sr=None)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
class LogMelSpectrogram(torch.nn.Module):
def __init__(self, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
super().__init__()
self.melspctrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_size,
hop_length=hop_size,
center=center,
power=1.0,
norm="slaney",
onesided=True,
n_mels=num_mels,
mel_scale="slaney",
f_min=fmin,
f_max=fmax
)
self.n_fft = n_fft
self.hop_size = hop_size
def forward(self, wav):
wav = F.pad(wav, ((self.n_fft - self.hop_size) // 2, (self.n_fft - self.hop_size) // 2), "reflect")
mel = self.melspctrogram(wav)
logmel = torch.log(torch.clamp(mel, min=1e-5))
return logmel
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
# print("Padding by", int((n_fft - hop_size)/2), y.shape)
# pre-padding
n_pad = hop_size - ( y.shape[1] % hop_size )
y = F.pad(y.unsqueeze(1), (0, n_pad), mode='reflect').squeeze(1)
# print("intermediate:", y.shape)
y = F.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
spec = spec.abs().clamp_(3e-5)
# print("Post: ", y.shape, spec.shape)
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
def get_dataset_filelist(a):
train_df = pd.read_csv(a.input_training_file)
valid_df = pd.read_csv(a.input_validation_file)
return train_df, valid_df
class MelDataset(torch.utils.data.Dataset):
def __init__(self, training_files, segment_size, n_fft, num_mels,
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
device=None, fmax_loss=None, fine_tuning=False, audio_root_path=None, feat_root_path=None, use_alt_melcalc=False):
self.audio_files = training_files
if shuffle:
self.audio_files = self.audio_files.sample(frac=1, random_state=1234)
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.fmax_loss = fmax_loss
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.fine_tuning = fine_tuning
self.audio_root_path = Path(audio_root_path)
self.feat_root_path = Path(feat_root_path)
self.alt_melspec = LogMelSpectrogram(n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax)
self.use_alt_melcalc = use_alt_melcalc
def __getitem__(self, index):
row = self.audio_files.iloc[index]
if self._cache_ref_count == 0:
audio, sampling_rate = load_wav(self.audio_root_path/row.audio_path)
if not self.fine_tuning:
audio = normalize(audio) * 0.95
self.cached_wav = audio
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.tensor(audio, dtype=torch.float32)
audio = audio.unsqueeze(0)
if not self.fine_tuning:
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start:audio_start+self.segment_size]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel = self.alt_melspec(audio)
else:
mel1 = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
center=False)
mel = mel.permute(0, 2, 1) # (1, dim, seq_len) --> (1, seq_len, dim)
else:
mel = torch.load(self.feat_root_path/row.feat_path, map_location='cpu').float()
if len(mel.shape) < 3:
mel = mel.unsqueeze(0) # (1, seq_len, dim)
if self.split:
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
if audio.size(1) >= self.segment_size:
mel_start = random.randint(0, mel.size(1) - frames_per_seg - 1)
mel = mel[:, mel_start:mel_start + frames_per_seg, :]
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
else:
mel = torch.nn.functional.pad(mel, (0, 0, 0, frames_per_seg - mel.size(2)), 'constant')
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel_loss = self.alt_melspec(audio)
else:
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
center=False)
return (mel.squeeze(), audio.squeeze(0), str(row.audio_path), mel_loss.squeeze())
def __len__(self):
return len(self.audio_files)