File size: 1,662 Bytes
a070f41
e905207
4de15a4
 
 
 
a070f41
 
 
 
4de15a4
 
 
 
 
 
f090db9
 
 
 
a070f41
 
 
 
 
 
 
 
 
 
 
 
4de15a4
a070f41
 
 
 
 
 
 
 
 
 
 
 
f090db9
4de15a4
f090db9
 
 
4de15a4
f090db9
 
 
 
4de15a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from huggingface_hub import InferenceClient
import gradio as gr
import torch

# Sprawdź, czy CUDA jest dostępne
device = "cuda" if torch.cuda.is_available() else "cpu"

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(
    prompt, history, temperature=0, max_new_tokens=3500, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
        device=device,  # Dodajemy obsługę CUDA
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

mychatbot = gr.Chatbot(
    bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)

demo = gr.ChatInterface(fn=generate,
                        chatbot=mychatbot,
                        title="Test API :)",
                        retry_btn=None,
                        undo_btn=None
                       )

demo.queue().launch(show_api=True)