Spaces:
Runtime error
Runtime error
wmpscc
commited on
Commit
•
7d1312d
1
Parent(s):
6aa2a6e
add
Browse files- app.py +56 -0
- configs.py +9 -0
- data/fairface_gender_angle.csv +0 -0
- img/demo.png +0 -0
- img/pic_top.jpg +0 -0
- models/__init__.py +0 -0
- models/__pycache__/__init__.cpython-39.pyc +0 -0
- models/encoders/__init__.py +0 -0
- models/encoders/helpers.py +140 -0
- models/encoders/model_irse.py +84 -0
- models/encoders/psp_encoders.py +236 -0
- models/stylegan2/__init__.py +0 -0
- models/stylegan2/__pycache__/__init__.cpython-39.pyc +0 -0
- models/stylegan2/__pycache__/model.cpython-39.pyc +0 -0
- models/stylegan2/model.py +674 -0
- models/stylegan2/op/__init__.py +2 -0
- models/stylegan2/op/__pycache__/__init__.cpython-39.pyc +0 -0
- models/stylegan2/op/__pycache__/fused_act.cpython-39.pyc +0 -0
- models/stylegan2/op/fused_act.py +86 -0
- models/stylegan2/op/fused_bias_act.cpp +21 -0
- models/stylegan2/op/fused_bias_act_kernel.cu +99 -0
- models/stylegan2/op/upfirdn2d.cpp +23 -0
- models/stylegan2/op/upfirdn2d.py +186 -0
- models/stylegan2/op/upfirdn2d_kernel.cu +272 -0
- models/stylegene/__init__.py +0 -0
- models/stylegene/__pycache__/__init__.cpython-39.pyc +0 -0
- models/stylegene/__pycache__/api.cpython-39.pyc +0 -0
- models/stylegene/api.py +94 -0
- models/stylegene/data_util.py +36 -0
- models/stylegene/fair_face_model.py +61 -0
- models/stylegene/gene_crossover_mutation.py +64 -0
- models/stylegene/gene_pool.py +42 -0
- models/stylegene/model.py +209 -0
- models/stylegene/util.py +30 -0
- preprocess/__init__.py +0 -0
- preprocess/align_images.py +32 -0
- preprocess/face_alignment.py +87 -0
- preprocess/landmarks_detector.py +24 -0
- requirements.txt +19 -0
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
#from models.stylegene.api import synthesize_descendant
|
4 |
+
|
5 |
+
description = """<p style="text-align: center; font-weight: bold;">
|
6 |
+
<span style="font-size: 28px">StyleGene: Crossover and Mutation of Region-Level Facial Genes for Kinship Face Synthesis</span>
|
7 |
+
<br>
|
8 |
+
<span style="font-size: 18px" id="paper-info">
|
9 |
+
[<a href="https://wmpscc.github.io/stylegene/" target="_blank">Project Page</a>]
|
10 |
+
[<a href="https://openaccess.thecvf.com/content/CVPR2023/papers/Li_StyleGene_Crossover_and_Mutation_of_Region-Level_Facial_Genes_for_Kinship_CVPR_2023_paper.pdf" target="_blank">Paper</a>]
|
11 |
+
[<a href="https://github.com/CVI-SZU/StyleGene" target="_blank">GitHub</a>]
|
12 |
+
</span>
|
13 |
+
<br>
|
14 |
+
<a> Tips: One picture should have only one face.</a>
|
15 |
+
</p>"""
|
16 |
+
|
17 |
+
block = gr.Blocks()
|
18 |
+
with block:
|
19 |
+
gr.HTML(description)
|
20 |
+
with gr.Row():
|
21 |
+
with gr.Column():
|
22 |
+
gr.Markdown("### Upload photos of father and mother")
|
23 |
+
with gr.Row():
|
24 |
+
img1 = gr.Image(label="Father")
|
25 |
+
img2 = gr.Image(label="Mother")
|
26 |
+
gr.Markdown("### Select the child's age and gender")
|
27 |
+
with gr.Row():
|
28 |
+
age = gr.Dropdown(label="Age",
|
29 |
+
choices=["0-2", "3-9", "10-19", "20-29", "30-39",
|
30 |
+
"40-49", "50-59", "60-69", "70+"], value="3-9")
|
31 |
+
gender = gr.Dropdown(label="Gender", choices=["male", "female"], value="female")
|
32 |
+
gr.Markdown("### Adjust your child's resemblance to parents")
|
33 |
+
bar1 = gr.Slider(label="gamma", minimum=0, maximum=1, value=0.47)
|
34 |
+
bar2 = gr.Slider(label="eta", minimum=0, maximum=1, value=0.4)
|
35 |
+
bt_run = gr.Button("Run")
|
36 |
+
gr.Markdown("""## Disclaimer
|
37 |
+
This method is intended for academic research purposes only and is strictly prohibited for commercial use.
|
38 |
+
Users are required to comply with all local laws and regulations when using this method.""")
|
39 |
+
|
40 |
+
with gr.Column():
|
41 |
+
gr.Markdown("### Results")
|
42 |
+
img3 = gr.Image(label="Generated child")
|
43 |
+
with gr.Row():
|
44 |
+
img1_align = gr.Image(label="Father")
|
45 |
+
img2_align = gr.Image(label="Mother")
|
46 |
+
|
47 |
+
|
48 |
+
def run(father, mother, gamma, eta, age, gender):
|
49 |
+
attributes = {'age': age, 'gender': gender, 'gamma': float(gamma), 'eta': float(eta)}
|
50 |
+
img_F, img_M, img_C = synthesize_descendant(father, mother, attributes)
|
51 |
+
return img_F, img_M, img_C
|
52 |
+
|
53 |
+
|
54 |
+
bt_run.click(run, [img1, img2, bar1, bar2, age, gender], [img1_align, img2_align, img3])
|
55 |
+
|
56 |
+
block.launch(show_error=True)
|
configs.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
path_ckpt_landmark68 = "checkpoints/shape_predictor_68_face_landmarks.dat.bz2"
|
2 |
+
path_ckpt_e4e = "/home/cvi_demo/PythonProject/StyleGene/checkpoints/e4e_ffhq_encode.pt"
|
3 |
+
path_ckpt_stylegan2 = '/home/cvi_demo/PythonProject/StyleGene/checkpoints/stylegan2-ffhq-config-f.pt'
|
4 |
+
path_ckpt_stylegene = "/home/cvi_demo/PythonProject/StyleGene/checkpoints/stylegene_N18.ckpt"
|
5 |
+
path_ckpt_fairface = '/home/cvi_demo/PythonProject/StyleGene/checkpoints/res34_fair_align_multi_7_20190809.pt'
|
6 |
+
path_ckpt_genepool = "/home/cvi_demo/PythonProject/StyleGene/checkpoints/geneFactorPool.pkl"
|
7 |
+
|
8 |
+
path_csv_ffhq_attritube = 'data/fairface_gender_angle.csv'
|
9 |
+
path_dataset_ffhq = None
|
data/fairface_gender_angle.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
img/demo.png
ADDED
img/pic_top.jpg
ADDED
models/__init__.py
ADDED
File without changes
|
models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (135 Bytes). View file
|
|
models/encoders/__init__.py
ADDED
File without changes
|
models/encoders/helpers.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
5 |
+
|
6 |
+
"""
|
7 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
class Flatten(Module):
|
12 |
+
def forward(self, input):
|
13 |
+
return input.view(input.size(0), -1)
|
14 |
+
|
15 |
+
|
16 |
+
def l2_norm(input, axis=1):
|
17 |
+
norm = torch.norm(input, 2, axis, True)
|
18 |
+
output = torch.div(input, norm)
|
19 |
+
return output
|
20 |
+
|
21 |
+
|
22 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
23 |
+
""" A named tuple describing a ResNet block. """
|
24 |
+
|
25 |
+
|
26 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
27 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
28 |
+
|
29 |
+
|
30 |
+
def get_blocks(num_layers):
|
31 |
+
if num_layers == 50:
|
32 |
+
blocks = [
|
33 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
34 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
35 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
36 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
37 |
+
]
|
38 |
+
elif num_layers == 100:
|
39 |
+
blocks = [
|
40 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
41 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
42 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
43 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
44 |
+
]
|
45 |
+
elif num_layers == 152:
|
46 |
+
blocks = [
|
47 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
48 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
49 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
50 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
51 |
+
]
|
52 |
+
else:
|
53 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
54 |
+
return blocks
|
55 |
+
|
56 |
+
|
57 |
+
class SEModule(Module):
|
58 |
+
def __init__(self, channels, reduction):
|
59 |
+
super(SEModule, self).__init__()
|
60 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
61 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
62 |
+
self.relu = ReLU(inplace=True)
|
63 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
64 |
+
self.sigmoid = Sigmoid()
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
module_input = x
|
68 |
+
x = self.avg_pool(x)
|
69 |
+
x = self.fc1(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
x = self.fc2(x)
|
72 |
+
x = self.sigmoid(x)
|
73 |
+
return module_input * x
|
74 |
+
|
75 |
+
|
76 |
+
class bottleneck_IR(Module):
|
77 |
+
def __init__(self, in_channel, depth, stride):
|
78 |
+
super(bottleneck_IR, self).__init__()
|
79 |
+
if in_channel == depth:
|
80 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
81 |
+
else:
|
82 |
+
self.shortcut_layer = Sequential(
|
83 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
84 |
+
BatchNorm2d(depth)
|
85 |
+
)
|
86 |
+
self.res_layer = Sequential(
|
87 |
+
BatchNorm2d(in_channel),
|
88 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
89 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
shortcut = self.shortcut_layer(x)
|
94 |
+
res = self.res_layer(x)
|
95 |
+
return res + shortcut
|
96 |
+
|
97 |
+
|
98 |
+
class bottleneck_IR_SE(Module):
|
99 |
+
def __init__(self, in_channel, depth, stride):
|
100 |
+
super(bottleneck_IR_SE, self).__init__()
|
101 |
+
if in_channel == depth:
|
102 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
103 |
+
else:
|
104 |
+
self.shortcut_layer = Sequential(
|
105 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
106 |
+
BatchNorm2d(depth)
|
107 |
+
)
|
108 |
+
self.res_layer = Sequential(
|
109 |
+
BatchNorm2d(in_channel),
|
110 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
111 |
+
PReLU(depth),
|
112 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
113 |
+
BatchNorm2d(depth),
|
114 |
+
SEModule(depth, 16)
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
shortcut = self.shortcut_layer(x)
|
119 |
+
res = self.res_layer(x)
|
120 |
+
return res + shortcut
|
121 |
+
|
122 |
+
|
123 |
+
def _upsample_add(x, y):
|
124 |
+
"""Upsample and add two feature maps.
|
125 |
+
Args:
|
126 |
+
x: (Variable) top feature map to be upsampled.
|
127 |
+
y: (Variable) lateral feature map.
|
128 |
+
Returns:
|
129 |
+
(Variable) added feature map.
|
130 |
+
Note in PyTorch, when input size is odd, the upsampled feature map
|
131 |
+
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
132 |
+
maybe not equal to the lateral feature map size.
|
133 |
+
e.g.
|
134 |
+
original input size: [N,_,15,15] ->
|
135 |
+
conv2d feature map size: [N,_,8,8] ->
|
136 |
+
upsampled feature map size: [N,_,16,16]
|
137 |
+
So we choose bilinear upsample which supports arbitrary output sizes.
|
138 |
+
"""
|
139 |
+
_, _, H, W = y.size()
|
140 |
+
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
models/encoders/model_irse.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
|
2 |
+
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
|
3 |
+
|
4 |
+
"""
|
5 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class Backbone(Module):
|
10 |
+
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
|
11 |
+
super(Backbone, self).__init__()
|
12 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
13 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
14 |
+
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
|
15 |
+
blocks = get_blocks(num_layers)
|
16 |
+
if mode == 'ir':
|
17 |
+
unit_module = bottleneck_IR
|
18 |
+
elif mode == 'ir_se':
|
19 |
+
unit_module = bottleneck_IR_SE
|
20 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
21 |
+
BatchNorm2d(64),
|
22 |
+
PReLU(64))
|
23 |
+
if input_size == 112:
|
24 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
25 |
+
Dropout(drop_ratio),
|
26 |
+
Flatten(),
|
27 |
+
Linear(512 * 7 * 7, 512),
|
28 |
+
BatchNorm1d(512, affine=affine))
|
29 |
+
else:
|
30 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
31 |
+
Dropout(drop_ratio),
|
32 |
+
Flatten(),
|
33 |
+
Linear(512 * 14 * 14, 512),
|
34 |
+
BatchNorm1d(512, affine=affine))
|
35 |
+
|
36 |
+
modules = []
|
37 |
+
for block in blocks:
|
38 |
+
for bottleneck in block:
|
39 |
+
modules.append(unit_module(bottleneck.in_channel,
|
40 |
+
bottleneck.depth,
|
41 |
+
bottleneck.stride))
|
42 |
+
self.body = Sequential(*modules)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.input_layer(x)
|
46 |
+
x = self.body(x)
|
47 |
+
x = self.output_layer(x)
|
48 |
+
return l2_norm(x)
|
49 |
+
|
50 |
+
|
51 |
+
def IR_50(input_size):
|
52 |
+
"""Constructs a ir-50 model."""
|
53 |
+
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
|
54 |
+
return model
|
55 |
+
|
56 |
+
|
57 |
+
def IR_101(input_size):
|
58 |
+
"""Constructs a ir-101 model."""
|
59 |
+
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
|
60 |
+
return model
|
61 |
+
|
62 |
+
|
63 |
+
def IR_152(input_size):
|
64 |
+
"""Constructs a ir-152 model."""
|
65 |
+
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
|
66 |
+
return model
|
67 |
+
|
68 |
+
|
69 |
+
def IR_SE_50(input_size):
|
70 |
+
"""Constructs a ir_se-50 model."""
|
71 |
+
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def IR_SE_101(input_size):
|
76 |
+
"""Constructs a ir_se-101 model."""
|
77 |
+
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
|
78 |
+
return model
|
79 |
+
|
80 |
+
|
81 |
+
def IR_SE_152(input_size):
|
82 |
+
"""Constructs a ir_se-152 model."""
|
83 |
+
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
|
84 |
+
return model
|
models/encoders/psp_encoders.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
7 |
+
|
8 |
+
from models.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE, _upsample_add
|
9 |
+
from models.stylegan2.model import EqualLinear
|
10 |
+
|
11 |
+
|
12 |
+
# Adapted from https://github.com/omertov/encoder4editing
|
13 |
+
class ProgressiveStage(Enum):
|
14 |
+
WTraining = 0
|
15 |
+
Delta1Training = 1
|
16 |
+
Delta2Training = 2
|
17 |
+
Delta3Training = 3
|
18 |
+
Delta4Training = 4
|
19 |
+
Delta5Training = 5
|
20 |
+
Delta6Training = 6
|
21 |
+
Delta7Training = 7
|
22 |
+
Delta8Training = 8
|
23 |
+
Delta9Training = 9
|
24 |
+
Delta10Training = 10
|
25 |
+
Delta11Training = 11
|
26 |
+
Delta12Training = 12
|
27 |
+
Delta13Training = 13
|
28 |
+
Delta14Training = 14
|
29 |
+
Delta15Training = 15
|
30 |
+
Delta16Training = 16
|
31 |
+
Delta17Training = 17
|
32 |
+
Inference = 18
|
33 |
+
|
34 |
+
|
35 |
+
class GradualStyleBlock(Module):
|
36 |
+
def __init__(self, in_c, out_c, spatial):
|
37 |
+
super(GradualStyleBlock, self).__init__()
|
38 |
+
self.out_c = out_c
|
39 |
+
self.spatial = spatial
|
40 |
+
num_pools = int(np.log2(spatial))
|
41 |
+
modules = []
|
42 |
+
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
43 |
+
nn.LeakyReLU()]
|
44 |
+
for i in range(num_pools - 1):
|
45 |
+
modules += [
|
46 |
+
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
47 |
+
nn.LeakyReLU()
|
48 |
+
]
|
49 |
+
self.convs = nn.Sequential(*modules)
|
50 |
+
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.convs(x)
|
54 |
+
x = x.view(-1, self.out_c)
|
55 |
+
x = self.linear(x)
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class GradualStyleEncoder(Module):
|
60 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
61 |
+
super(GradualStyleEncoder, self).__init__()
|
62 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
63 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
64 |
+
blocks = get_blocks(num_layers)
|
65 |
+
if mode == 'ir':
|
66 |
+
unit_module = bottleneck_IR
|
67 |
+
elif mode == 'ir_se':
|
68 |
+
unit_module = bottleneck_IR_SE
|
69 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
70 |
+
BatchNorm2d(64),
|
71 |
+
PReLU(64))
|
72 |
+
modules = []
|
73 |
+
for block in blocks:
|
74 |
+
for bottleneck in block:
|
75 |
+
modules.append(unit_module(bottleneck.in_channel,
|
76 |
+
bottleneck.depth,
|
77 |
+
bottleneck.stride))
|
78 |
+
self.body = Sequential(*modules)
|
79 |
+
|
80 |
+
self.styles = nn.ModuleList()
|
81 |
+
log_size = int(math.log(opts.stylegan_size, 2))
|
82 |
+
self.style_count = 2 * log_size - 2
|
83 |
+
self.coarse_ind = 3
|
84 |
+
self.middle_ind = 7
|
85 |
+
for i in range(self.style_count):
|
86 |
+
if i < self.coarse_ind:
|
87 |
+
style = GradualStyleBlock(512, 512, 16)
|
88 |
+
elif i < self.middle_ind:
|
89 |
+
style = GradualStyleBlock(512, 512, 32)
|
90 |
+
else:
|
91 |
+
style = GradualStyleBlock(512, 512, 64)
|
92 |
+
self.styles.append(style)
|
93 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
94 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
x = self.input_layer(x)
|
98 |
+
|
99 |
+
latents = []
|
100 |
+
modulelist = list(self.body._modules.values())
|
101 |
+
for i, l in enumerate(modulelist):
|
102 |
+
x = l(x)
|
103 |
+
if i == 6:
|
104 |
+
c1 = x
|
105 |
+
elif i == 20:
|
106 |
+
c2 = x
|
107 |
+
elif i == 23:
|
108 |
+
c3 = x
|
109 |
+
|
110 |
+
for j in range(self.coarse_ind):
|
111 |
+
latents.append(self.styles[j](c3))
|
112 |
+
|
113 |
+
p2 = _upsample_add(c3, self.latlayer1(c2))
|
114 |
+
for j in range(self.coarse_ind, self.middle_ind):
|
115 |
+
latents.append(self.styles[j](p2))
|
116 |
+
|
117 |
+
p1 = _upsample_add(p2, self.latlayer2(c1))
|
118 |
+
for j in range(self.middle_ind, self.style_count):
|
119 |
+
latents.append(self.styles[j](p1))
|
120 |
+
|
121 |
+
out = torch.stack(latents, dim=1)
|
122 |
+
return out
|
123 |
+
|
124 |
+
|
125 |
+
class Encoder4Editing(Module):
|
126 |
+
def __init__(self, num_layers, mode='ir', stylegan_size=1024):
|
127 |
+
super(Encoder4Editing, self).__init__()
|
128 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
129 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
130 |
+
blocks = get_blocks(num_layers)
|
131 |
+
if mode == 'ir':
|
132 |
+
unit_module = bottleneck_IR
|
133 |
+
elif mode == 'ir_se':
|
134 |
+
unit_module = bottleneck_IR_SE
|
135 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
136 |
+
BatchNorm2d(64),
|
137 |
+
PReLU(64))
|
138 |
+
modules = []
|
139 |
+
for block in blocks:
|
140 |
+
for bottleneck in block:
|
141 |
+
modules.append(unit_module(bottleneck.in_channel,
|
142 |
+
bottleneck.depth,
|
143 |
+
bottleneck.stride))
|
144 |
+
self.body = Sequential(*modules)
|
145 |
+
|
146 |
+
self.styles = nn.ModuleList()
|
147 |
+
log_size = int(math.log(stylegan_size, 2))
|
148 |
+
self.style_count = 2 * log_size - 2
|
149 |
+
self.coarse_ind = 3
|
150 |
+
self.middle_ind = 7
|
151 |
+
|
152 |
+
for i in range(self.style_count):
|
153 |
+
if i < self.coarse_ind:
|
154 |
+
style = GradualStyleBlock(512, 512, 16)
|
155 |
+
elif i < self.middle_ind:
|
156 |
+
style = GradualStyleBlock(512, 512, 32)
|
157 |
+
else:
|
158 |
+
style = GradualStyleBlock(512, 512, 64)
|
159 |
+
self.styles.append(style)
|
160 |
+
|
161 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
162 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
163 |
+
|
164 |
+
self.progressive_stage = ProgressiveStage.Inference
|
165 |
+
|
166 |
+
def get_deltas_starting_dimensions(self):
|
167 |
+
''' Get a list of the initial dimension of every delta from which it is applied '''
|
168 |
+
return list(range(self.style_count)) # Each dimension has a delta applied to it
|
169 |
+
|
170 |
+
def set_progressive_stage(self, new_stage: ProgressiveStage):
|
171 |
+
self.progressive_stage = new_stage
|
172 |
+
print('Changed progressive stage to: ', new_stage)
|
173 |
+
|
174 |
+
def forward(self, x):
|
175 |
+
x = self.input_layer(x)
|
176 |
+
|
177 |
+
modulelist = list(self.body._modules.values())
|
178 |
+
for i, l in enumerate(modulelist):
|
179 |
+
x = l(x)
|
180 |
+
if i == 6:
|
181 |
+
c1 = x
|
182 |
+
elif i == 20:
|
183 |
+
c2 = x
|
184 |
+
elif i == 23:
|
185 |
+
c3 = x
|
186 |
+
|
187 |
+
# Infer main W and duplicate it
|
188 |
+
w0 = self.styles[0](c3)
|
189 |
+
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)
|
190 |
+
stage = self.progressive_stage.value
|
191 |
+
features = c3
|
192 |
+
for i in range(1, min(stage + 1, self.style_count)): # Infer additional deltas
|
193 |
+
if i == self.coarse_ind:
|
194 |
+
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features
|
195 |
+
features = p2
|
196 |
+
elif i == self.middle_ind:
|
197 |
+
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features
|
198 |
+
features = p1
|
199 |
+
delta_i = self.styles[i](features)
|
200 |
+
w[:, i] += delta_i
|
201 |
+
return w
|
202 |
+
|
203 |
+
|
204 |
+
class BackboneEncoderUsingLastLayerIntoW(Module):
|
205 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
206 |
+
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
|
207 |
+
print('Using BackboneEncoderUsingLastLayerIntoW')
|
208 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
209 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
210 |
+
blocks = get_blocks(num_layers)
|
211 |
+
if mode == 'ir':
|
212 |
+
unit_module = bottleneck_IR
|
213 |
+
elif mode == 'ir_se':
|
214 |
+
unit_module = bottleneck_IR_SE
|
215 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
216 |
+
BatchNorm2d(64),
|
217 |
+
PReLU(64))
|
218 |
+
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
219 |
+
self.linear = EqualLinear(512, 512, lr_mul=1)
|
220 |
+
modules = []
|
221 |
+
for block in blocks:
|
222 |
+
for bottleneck in block:
|
223 |
+
modules.append(unit_module(bottleneck.in_channel,
|
224 |
+
bottleneck.depth,
|
225 |
+
bottleneck.stride))
|
226 |
+
self.body = Sequential(*modules)
|
227 |
+
log_size = int(math.log(opts.stylegan_size, 2))
|
228 |
+
self.style_count = 2 * log_size - 2
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
x = self.input_layer(x)
|
232 |
+
x = self.body(x)
|
233 |
+
x = self.output_pool(x)
|
234 |
+
x = x.view(-1, 512)
|
235 |
+
x = self.linear(x)
|
236 |
+
return x.repeat(self.style_count, 1, 1).permute(1, 0, 2)
|
models/stylegan2/__init__.py
ADDED
File without changes
|
models/stylegan2/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (145 Bytes). View file
|
|
models/stylegan2/__pycache__/model.cpython-39.pyc
ADDED
Binary file (15.8 kB). View file
|
|
models/stylegan2/model.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from .op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
8 |
+
|
9 |
+
# Adapted from https://github.com/rosinality/stylegan2-pytorch
|
10 |
+
|
11 |
+
class PixelNorm(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def forward(self, input):
|
16 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
17 |
+
|
18 |
+
|
19 |
+
def make_kernel(k):
|
20 |
+
k = torch.tensor(k, dtype=torch.float32)
|
21 |
+
|
22 |
+
if k.ndim == 1:
|
23 |
+
k = k[None, :] * k[:, None]
|
24 |
+
|
25 |
+
k /= k.sum()
|
26 |
+
|
27 |
+
return k
|
28 |
+
|
29 |
+
|
30 |
+
class Upsample(nn.Module):
|
31 |
+
def __init__(self, kernel, factor=2):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.factor = factor
|
35 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
36 |
+
self.register_buffer('kernel', kernel)
|
37 |
+
|
38 |
+
p = kernel.shape[0] - factor
|
39 |
+
|
40 |
+
pad0 = (p + 1) // 2 + factor - 1
|
41 |
+
pad1 = p // 2
|
42 |
+
|
43 |
+
self.pad = (pad0, pad1)
|
44 |
+
|
45 |
+
def forward(self, input):
|
46 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
47 |
+
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
class Downsample(nn.Module):
|
52 |
+
def __init__(self, kernel, factor=2):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
self.factor = factor
|
56 |
+
kernel = make_kernel(kernel)
|
57 |
+
self.register_buffer('kernel', kernel)
|
58 |
+
|
59 |
+
p = kernel.shape[0] - factor
|
60 |
+
|
61 |
+
pad0 = (p + 1) // 2
|
62 |
+
pad1 = p // 2
|
63 |
+
|
64 |
+
self.pad = (pad0, pad1)
|
65 |
+
|
66 |
+
def forward(self, input):
|
67 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
68 |
+
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class Blur(nn.Module):
|
73 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
74 |
+
super().__init__()
|
75 |
+
|
76 |
+
kernel = make_kernel(kernel)
|
77 |
+
|
78 |
+
if upsample_factor > 1:
|
79 |
+
kernel = kernel * (upsample_factor ** 2)
|
80 |
+
|
81 |
+
self.register_buffer('kernel', kernel)
|
82 |
+
|
83 |
+
self.pad = pad
|
84 |
+
|
85 |
+
def forward(self, input):
|
86 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
87 |
+
|
88 |
+
return out
|
89 |
+
|
90 |
+
|
91 |
+
class EqualConv2d(nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.weight = nn.Parameter(
|
98 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
99 |
+
)
|
100 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
101 |
+
|
102 |
+
self.stride = stride
|
103 |
+
self.padding = padding
|
104 |
+
|
105 |
+
if bias:
|
106 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
107 |
+
|
108 |
+
else:
|
109 |
+
self.bias = None
|
110 |
+
|
111 |
+
def forward(self, input):
|
112 |
+
out = F.conv2d(
|
113 |
+
input,
|
114 |
+
self.weight * self.scale,
|
115 |
+
bias=self.bias,
|
116 |
+
stride=self.stride,
|
117 |
+
padding=self.padding,
|
118 |
+
)
|
119 |
+
|
120 |
+
return out
|
121 |
+
|
122 |
+
def __repr__(self):
|
123 |
+
return (
|
124 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
125 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class EqualLinear(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
|
135 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
136 |
+
|
137 |
+
if bias:
|
138 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
139 |
+
|
140 |
+
else:
|
141 |
+
self.bias = None
|
142 |
+
|
143 |
+
self.activation = activation
|
144 |
+
|
145 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
146 |
+
self.lr_mul = lr_mul
|
147 |
+
|
148 |
+
def forward(self, input):
|
149 |
+
if self.activation:
|
150 |
+
out = F.linear(input, self.weight * self.scale)
|
151 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
152 |
+
|
153 |
+
else:
|
154 |
+
out = F.linear(
|
155 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
156 |
+
)
|
157 |
+
|
158 |
+
return out
|
159 |
+
|
160 |
+
def __repr__(self):
|
161 |
+
return (
|
162 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
class ScaledLeakyReLU(nn.Module):
|
167 |
+
def __init__(self, negative_slope=0.2):
|
168 |
+
super().__init__()
|
169 |
+
|
170 |
+
self.negative_slope = negative_slope
|
171 |
+
|
172 |
+
def forward(self, input):
|
173 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
174 |
+
|
175 |
+
return out * math.sqrt(2)
|
176 |
+
|
177 |
+
|
178 |
+
class ModulatedConv2d(nn.Module):
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
in_channel,
|
182 |
+
out_channel,
|
183 |
+
kernel_size,
|
184 |
+
style_dim,
|
185 |
+
demodulate=True,
|
186 |
+
upsample=False,
|
187 |
+
downsample=False,
|
188 |
+
blur_kernel=[1, 3, 3, 1],
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
|
192 |
+
self.eps = 1e-8
|
193 |
+
self.kernel_size = kernel_size
|
194 |
+
self.in_channel = in_channel
|
195 |
+
self.out_channel = out_channel
|
196 |
+
self.upsample = upsample
|
197 |
+
self.downsample = downsample
|
198 |
+
|
199 |
+
if upsample:
|
200 |
+
factor = 2
|
201 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
202 |
+
pad0 = (p + 1) // 2 + factor - 1
|
203 |
+
pad1 = p // 2 + 1
|
204 |
+
|
205 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
206 |
+
|
207 |
+
if downsample:
|
208 |
+
factor = 2
|
209 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
210 |
+
pad0 = (p + 1) // 2
|
211 |
+
pad1 = p // 2
|
212 |
+
|
213 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
214 |
+
|
215 |
+
fan_in = in_channel * kernel_size ** 2
|
216 |
+
self.scale = 1 / math.sqrt(fan_in)
|
217 |
+
self.padding = kernel_size // 2
|
218 |
+
|
219 |
+
self.weight = nn.Parameter(
|
220 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
221 |
+
)
|
222 |
+
|
223 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
224 |
+
|
225 |
+
self.demodulate = demodulate
|
226 |
+
|
227 |
+
def __repr__(self):
|
228 |
+
return (
|
229 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
230 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
231 |
+
)
|
232 |
+
|
233 |
+
def forward(self, input, style):
|
234 |
+
batch, in_channel, height, width = input.shape
|
235 |
+
|
236 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
237 |
+
weight = self.scale * self.weight * style
|
238 |
+
|
239 |
+
if self.demodulate:
|
240 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
241 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
242 |
+
|
243 |
+
weight = weight.view(
|
244 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
245 |
+
)
|
246 |
+
|
247 |
+
if self.upsample:
|
248 |
+
input = input.view(1, batch * in_channel, height, width)
|
249 |
+
weight = weight.view(
|
250 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
251 |
+
)
|
252 |
+
weight = weight.transpose(1, 2).reshape(
|
253 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
254 |
+
)
|
255 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
256 |
+
_, _, height, width = out.shape
|
257 |
+
out = out.view(batch, self.out_channel, height, width)
|
258 |
+
out = self.blur(out)
|
259 |
+
|
260 |
+
elif self.downsample:
|
261 |
+
input = self.blur(input)
|
262 |
+
_, _, height, width = input.shape
|
263 |
+
input = input.view(1, batch * in_channel, height, width)
|
264 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
265 |
+
_, _, height, width = out.shape
|
266 |
+
out = out.view(batch, self.out_channel, height, width)
|
267 |
+
|
268 |
+
else:
|
269 |
+
input = input.view(1, batch * in_channel, height, width)
|
270 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
271 |
+
_, _, height, width = out.shape
|
272 |
+
out = out.view(batch, self.out_channel, height, width)
|
273 |
+
|
274 |
+
return out
|
275 |
+
|
276 |
+
|
277 |
+
class NoiseInjection(nn.Module):
|
278 |
+
def __init__(self):
|
279 |
+
super().__init__()
|
280 |
+
|
281 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
282 |
+
|
283 |
+
def forward(self, image, noise=None):
|
284 |
+
if noise is None:
|
285 |
+
batch, _, height, width = image.shape
|
286 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
287 |
+
|
288 |
+
return image + self.weight * noise
|
289 |
+
|
290 |
+
|
291 |
+
class ConstantInput(nn.Module):
|
292 |
+
def __init__(self, channel, size=4):
|
293 |
+
super().__init__()
|
294 |
+
|
295 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
296 |
+
|
297 |
+
def forward(self, input):
|
298 |
+
batch = input.shape[0]
|
299 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
300 |
+
|
301 |
+
return out
|
302 |
+
|
303 |
+
|
304 |
+
class StyledConv(nn.Module):
|
305 |
+
def __init__(
|
306 |
+
self,
|
307 |
+
in_channel,
|
308 |
+
out_channel,
|
309 |
+
kernel_size,
|
310 |
+
style_dim,
|
311 |
+
upsample=False,
|
312 |
+
blur_kernel=[1, 3, 3, 1],
|
313 |
+
demodulate=True,
|
314 |
+
):
|
315 |
+
super().__init__()
|
316 |
+
|
317 |
+
self.conv = ModulatedConv2d(
|
318 |
+
in_channel,
|
319 |
+
out_channel,
|
320 |
+
kernel_size,
|
321 |
+
style_dim,
|
322 |
+
upsample=upsample,
|
323 |
+
blur_kernel=blur_kernel,
|
324 |
+
demodulate=demodulate,
|
325 |
+
)
|
326 |
+
|
327 |
+
self.noise = NoiseInjection()
|
328 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
329 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
330 |
+
self.activate = FusedLeakyReLU(out_channel)
|
331 |
+
|
332 |
+
def forward(self, input, style, noise=None):
|
333 |
+
out = self.conv(input, style)
|
334 |
+
out = self.noise(out, noise=noise)
|
335 |
+
# out = out + self.bias
|
336 |
+
out = self.activate(out)
|
337 |
+
|
338 |
+
return out
|
339 |
+
|
340 |
+
|
341 |
+
class ToRGB(nn.Module):
|
342 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
343 |
+
super().__init__()
|
344 |
+
|
345 |
+
if upsample:
|
346 |
+
self.upsample = Upsample(blur_kernel)
|
347 |
+
|
348 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
349 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
350 |
+
|
351 |
+
def forward(self, input, style, skip=None):
|
352 |
+
out = self.conv(input, style)
|
353 |
+
out = out + self.bias
|
354 |
+
|
355 |
+
if skip is not None:
|
356 |
+
skip = self.upsample(skip)
|
357 |
+
|
358 |
+
out = out + skip
|
359 |
+
|
360 |
+
return out
|
361 |
+
|
362 |
+
|
363 |
+
class Generator(nn.Module):
|
364 |
+
def __init__(
|
365 |
+
self,
|
366 |
+
size,
|
367 |
+
style_dim,
|
368 |
+
n_mlp,
|
369 |
+
channel_multiplier=2,
|
370 |
+
blur_kernel=[1, 3, 3, 1],
|
371 |
+
lr_mlp=0.01,
|
372 |
+
):
|
373 |
+
super().__init__()
|
374 |
+
|
375 |
+
self.size = size
|
376 |
+
|
377 |
+
self.style_dim = style_dim
|
378 |
+
|
379 |
+
layers = [PixelNorm()]
|
380 |
+
|
381 |
+
for i in range(n_mlp):
|
382 |
+
layers.append(
|
383 |
+
EqualLinear(
|
384 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
385 |
+
)
|
386 |
+
)
|
387 |
+
|
388 |
+
self.style = nn.Sequential(*layers)
|
389 |
+
|
390 |
+
self.channels = {
|
391 |
+
4: 512,
|
392 |
+
8: 512,
|
393 |
+
16: 512,
|
394 |
+
32: 512,
|
395 |
+
64: 256 * channel_multiplier,
|
396 |
+
128: 128 * channel_multiplier,
|
397 |
+
256: 64 * channel_multiplier,
|
398 |
+
512: 32 * channel_multiplier,
|
399 |
+
1024: 16 * channel_multiplier,
|
400 |
+
}
|
401 |
+
|
402 |
+
self.input = ConstantInput(self.channels[4])
|
403 |
+
self.conv1 = StyledConv(
|
404 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
405 |
+
)
|
406 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
407 |
+
|
408 |
+
self.log_size = int(math.log(size, 2))
|
409 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
410 |
+
|
411 |
+
self.convs = nn.ModuleList()
|
412 |
+
self.upsamples = nn.ModuleList()
|
413 |
+
self.to_rgbs = nn.ModuleList()
|
414 |
+
self.noises = nn.Module()
|
415 |
+
|
416 |
+
in_channel = self.channels[4]
|
417 |
+
|
418 |
+
for layer_idx in range(self.num_layers):
|
419 |
+
res = (layer_idx + 5) // 2
|
420 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
421 |
+
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
422 |
+
|
423 |
+
for i in range(3, self.log_size + 1):
|
424 |
+
out_channel = self.channels[2 ** i]
|
425 |
+
|
426 |
+
self.convs.append(
|
427 |
+
StyledConv(
|
428 |
+
in_channel,
|
429 |
+
out_channel,
|
430 |
+
3,
|
431 |
+
style_dim,
|
432 |
+
upsample=True,
|
433 |
+
blur_kernel=blur_kernel,
|
434 |
+
)
|
435 |
+
)
|
436 |
+
|
437 |
+
self.convs.append(
|
438 |
+
StyledConv(
|
439 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
440 |
+
)
|
441 |
+
)
|
442 |
+
|
443 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
444 |
+
|
445 |
+
in_channel = out_channel
|
446 |
+
|
447 |
+
self.n_latent = self.log_size * 2 - 2
|
448 |
+
|
449 |
+
def make_noise(self):
|
450 |
+
device = self.input.input.device
|
451 |
+
|
452 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
453 |
+
|
454 |
+
for i in range(3, self.log_size + 1):
|
455 |
+
for _ in range(2):
|
456 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
457 |
+
|
458 |
+
return noises
|
459 |
+
|
460 |
+
def mean_latent(self, n_latent):
|
461 |
+
latent_in = torch.randn(
|
462 |
+
n_latent, self.style_dim, device=self.input.input.device
|
463 |
+
)
|
464 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
465 |
+
|
466 |
+
return latent
|
467 |
+
|
468 |
+
def get_latent(self, input):
|
469 |
+
return self.style(input)
|
470 |
+
|
471 |
+
def forward(
|
472 |
+
self,
|
473 |
+
styles,
|
474 |
+
return_latents=False,
|
475 |
+
return_features=False,
|
476 |
+
inject_index=None,
|
477 |
+
truncation=1,
|
478 |
+
truncation_latent=None,
|
479 |
+
input_is_latent=False,
|
480 |
+
noise=None,
|
481 |
+
randomize_noise=True,
|
482 |
+
):
|
483 |
+
if not input_is_latent:
|
484 |
+
styles = [self.style(s) for s in styles]
|
485 |
+
|
486 |
+
if noise is None:
|
487 |
+
if randomize_noise:
|
488 |
+
noise = [None] * self.num_layers
|
489 |
+
else:
|
490 |
+
noise = [
|
491 |
+
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
|
492 |
+
]
|
493 |
+
|
494 |
+
if truncation < 1:
|
495 |
+
style_t = []
|
496 |
+
|
497 |
+
for style in styles:
|
498 |
+
style_t.append(
|
499 |
+
truncation_latent + truncation * (style - truncation_latent)
|
500 |
+
)
|
501 |
+
|
502 |
+
styles = style_t
|
503 |
+
|
504 |
+
if len(styles) < 2:
|
505 |
+
inject_index = self.n_latent
|
506 |
+
|
507 |
+
if styles[0].ndim < 3:
|
508 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
509 |
+
else:
|
510 |
+
latent = styles[0]
|
511 |
+
|
512 |
+
else:
|
513 |
+
if inject_index is None:
|
514 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
515 |
+
|
516 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
517 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
518 |
+
|
519 |
+
latent = torch.cat([latent, latent2], 1)
|
520 |
+
|
521 |
+
out = self.input(latent)
|
522 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
523 |
+
|
524 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
525 |
+
|
526 |
+
i = 1
|
527 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
528 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
529 |
+
):
|
530 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
531 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
532 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
533 |
+
|
534 |
+
i += 2
|
535 |
+
|
536 |
+
image = skip
|
537 |
+
|
538 |
+
if return_latents:
|
539 |
+
return image, latent
|
540 |
+
elif return_features:
|
541 |
+
return image, out
|
542 |
+
else:
|
543 |
+
return image, None
|
544 |
+
|
545 |
+
|
546 |
+
class ConvLayer(nn.Sequential):
|
547 |
+
def __init__(
|
548 |
+
self,
|
549 |
+
in_channel,
|
550 |
+
out_channel,
|
551 |
+
kernel_size,
|
552 |
+
downsample=False,
|
553 |
+
blur_kernel=[1, 3, 3, 1],
|
554 |
+
bias=True,
|
555 |
+
activate=True,
|
556 |
+
):
|
557 |
+
layers = []
|
558 |
+
|
559 |
+
if downsample:
|
560 |
+
factor = 2
|
561 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
562 |
+
pad0 = (p + 1) // 2
|
563 |
+
pad1 = p // 2
|
564 |
+
|
565 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
566 |
+
|
567 |
+
stride = 2
|
568 |
+
self.padding = 0
|
569 |
+
|
570 |
+
else:
|
571 |
+
stride = 1
|
572 |
+
self.padding = kernel_size // 2
|
573 |
+
|
574 |
+
layers.append(
|
575 |
+
EqualConv2d(
|
576 |
+
in_channel,
|
577 |
+
out_channel,
|
578 |
+
kernel_size,
|
579 |
+
padding=self.padding,
|
580 |
+
stride=stride,
|
581 |
+
bias=bias and not activate,
|
582 |
+
)
|
583 |
+
)
|
584 |
+
|
585 |
+
if activate:
|
586 |
+
if bias:
|
587 |
+
layers.append(FusedLeakyReLU(out_channel))
|
588 |
+
|
589 |
+
else:
|
590 |
+
layers.append(ScaledLeakyReLU(0.2))
|
591 |
+
|
592 |
+
super().__init__(*layers)
|
593 |
+
|
594 |
+
|
595 |
+
class ResBlock(nn.Module):
|
596 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
597 |
+
super().__init__()
|
598 |
+
|
599 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
600 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
601 |
+
|
602 |
+
self.skip = ConvLayer(
|
603 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
604 |
+
)
|
605 |
+
|
606 |
+
def forward(self, input):
|
607 |
+
out = self.conv1(input)
|
608 |
+
out = self.conv2(out)
|
609 |
+
|
610 |
+
skip = self.skip(input)
|
611 |
+
out = (out + skip) / math.sqrt(2)
|
612 |
+
|
613 |
+
return out
|
614 |
+
|
615 |
+
|
616 |
+
class Discriminator(nn.Module):
|
617 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
618 |
+
super().__init__()
|
619 |
+
|
620 |
+
channels = {
|
621 |
+
4: 512,
|
622 |
+
8: 512,
|
623 |
+
16: 512,
|
624 |
+
32: 512,
|
625 |
+
64: 256 * channel_multiplier,
|
626 |
+
128: 128 * channel_multiplier,
|
627 |
+
256: 64 * channel_multiplier,
|
628 |
+
512: 32 * channel_multiplier,
|
629 |
+
1024: 16 * channel_multiplier,
|
630 |
+
}
|
631 |
+
|
632 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
633 |
+
|
634 |
+
log_size = int(math.log(size, 2))
|
635 |
+
|
636 |
+
in_channel = channels[size]
|
637 |
+
|
638 |
+
for i in range(log_size, 2, -1):
|
639 |
+
out_channel = channels[2 ** (i - 1)]
|
640 |
+
|
641 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
642 |
+
|
643 |
+
in_channel = out_channel
|
644 |
+
|
645 |
+
self.convs = nn.Sequential(*convs)
|
646 |
+
|
647 |
+
self.stddev_group = 4
|
648 |
+
self.stddev_feat = 1
|
649 |
+
|
650 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
651 |
+
self.final_linear = nn.Sequential(
|
652 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
653 |
+
EqualLinear(channels[4], 1),
|
654 |
+
)
|
655 |
+
|
656 |
+
def forward(self, input):
|
657 |
+
out = self.convs(input)
|
658 |
+
|
659 |
+
batch, channel, height, width = out.shape
|
660 |
+
group = min(batch, self.stddev_group)
|
661 |
+
stddev = out.view(
|
662 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
663 |
+
)
|
664 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
665 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
666 |
+
stddev = stddev.repeat(group, 1, height, width)
|
667 |
+
out = torch.cat([out, stddev], 1)
|
668 |
+
|
669 |
+
out = self.final_conv(out)
|
670 |
+
|
671 |
+
out = out.view(batch, -1)
|
672 |
+
out = self.final_linear(out)
|
673 |
+
|
674 |
+
return out
|
models/stylegan2/op/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
from .upfirdn2d import upfirdn2d
|
models/stylegan2/op/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (255 Bytes). View file
|
|
models/stylegan2/op/__pycache__/fused_act.cpython-39.pyc
ADDED
Binary file (2.83 kB). View file
|
|
models/stylegan2/op/fused_act.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.utils.cpp_extension import load
|
7 |
+
# from . import fused
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
fused = load(
|
11 |
+
'fused',
|
12 |
+
sources=[
|
13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
20 |
+
@staticmethod
|
21 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
22 |
+
ctx.save_for_backward(out)
|
23 |
+
ctx.negative_slope = negative_slope
|
24 |
+
ctx.scale = scale
|
25 |
+
|
26 |
+
empty = grad_output.new_empty(0)
|
27 |
+
|
28 |
+
grad_input = fused.fused_bias_act(
|
29 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
30 |
+
)
|
31 |
+
|
32 |
+
dim = [0]
|
33 |
+
|
34 |
+
if grad_input.ndim > 2:
|
35 |
+
dim += list(range(2, grad_input.ndim))
|
36 |
+
|
37 |
+
grad_bias = grad_input.sum(dim).detach()
|
38 |
+
|
39 |
+
return grad_input, grad_bias
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
43 |
+
out, = ctx.saved_tensors
|
44 |
+
gradgrad_out = fused.fused_bias_act(
|
45 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
46 |
+
)
|
47 |
+
|
48 |
+
return gradgrad_out, None, None, None
|
49 |
+
|
50 |
+
|
51 |
+
class FusedLeakyReLUFunction(Function):
|
52 |
+
@staticmethod
|
53 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
54 |
+
empty = input.new_empty(0)
|
55 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
56 |
+
ctx.save_for_backward(out)
|
57 |
+
ctx.negative_slope = negative_slope
|
58 |
+
ctx.scale = scale
|
59 |
+
|
60 |
+
return out
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def backward(ctx, grad_output):
|
64 |
+
out, = ctx.saved_tensors
|
65 |
+
|
66 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
67 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
68 |
+
)
|
69 |
+
|
70 |
+
return grad_input, grad_bias, None, None
|
71 |
+
|
72 |
+
|
73 |
+
class FusedLeakyReLU(nn.Module):
|
74 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
78 |
+
self.negative_slope = negative_slope
|
79 |
+
self.scale = scale
|
80 |
+
|
81 |
+
def forward(self, input):
|
82 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
83 |
+
|
84 |
+
|
85 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
models/stylegan2/op/fused_bias_act.cpp
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
5 |
+
int act, int grad, float alpha, float scale);
|
6 |
+
|
7 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
8 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
9 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
10 |
+
|
11 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
12 |
+
int act, int grad, float alpha, float scale) {
|
13 |
+
CHECK_CUDA(input);
|
14 |
+
CHECK_CUDA(bias);
|
15 |
+
|
16 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
17 |
+
}
|
18 |
+
|
19 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
20 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
21 |
+
}
|
models/stylegan2/op/fused_bias_act_kernel.cu
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
20 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
21 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
22 |
+
|
23 |
+
scalar_t zero = 0.0;
|
24 |
+
|
25 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
26 |
+
scalar_t x = p_x[xi];
|
27 |
+
|
28 |
+
if (use_bias) {
|
29 |
+
x += p_b[(xi / step_b) % size_b];
|
30 |
+
}
|
31 |
+
|
32 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
33 |
+
|
34 |
+
scalar_t y;
|
35 |
+
|
36 |
+
switch (act * 10 + grad) {
|
37 |
+
default:
|
38 |
+
case 10: y = x; break;
|
39 |
+
case 11: y = x; break;
|
40 |
+
case 12: y = 0.0; break;
|
41 |
+
|
42 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
43 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
44 |
+
case 32: y = 0.0; break;
|
45 |
+
}
|
46 |
+
|
47 |
+
out[xi] = y * scale;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
53 |
+
int act, int grad, float alpha, float scale) {
|
54 |
+
int curDevice = -1;
|
55 |
+
cudaGetDevice(&curDevice);
|
56 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
57 |
+
|
58 |
+
auto x = input.contiguous();
|
59 |
+
auto b = bias.contiguous();
|
60 |
+
auto ref = refer.contiguous();
|
61 |
+
|
62 |
+
int use_bias = b.numel() ? 1 : 0;
|
63 |
+
int use_ref = ref.numel() ? 1 : 0;
|
64 |
+
|
65 |
+
int size_x = x.numel();
|
66 |
+
int size_b = b.numel();
|
67 |
+
int step_b = 1;
|
68 |
+
|
69 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
70 |
+
step_b *= x.size(i);
|
71 |
+
}
|
72 |
+
|
73 |
+
int loop_x = 4;
|
74 |
+
int block_size = 4 * 32;
|
75 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
76 |
+
|
77 |
+
auto y = torch::empty_like(x);
|
78 |
+
|
79 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
80 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
81 |
+
y.data_ptr<scalar_t>(),
|
82 |
+
x.data_ptr<scalar_t>(),
|
83 |
+
b.data_ptr<scalar_t>(),
|
84 |
+
ref.data_ptr<scalar_t>(),
|
85 |
+
act,
|
86 |
+
grad,
|
87 |
+
alpha,
|
88 |
+
scale,
|
89 |
+
loop_x,
|
90 |
+
size_x,
|
91 |
+
step_b,
|
92 |
+
size_b,
|
93 |
+
use_bias,
|
94 |
+
use_ref
|
95 |
+
);
|
96 |
+
});
|
97 |
+
|
98 |
+
return y;
|
99 |
+
}
|
models/stylegan2/op/upfirdn2d.cpp
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
5 |
+
int up_x, int up_y, int down_x, int down_y,
|
6 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
7 |
+
|
8 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
9 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
10 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
11 |
+
|
12 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
13 |
+
int up_x, int up_y, int down_x, int down_y,
|
14 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
15 |
+
CHECK_CUDA(input);
|
16 |
+
CHECK_CUDA(kernel);
|
17 |
+
|
18 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
19 |
+
}
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
23 |
+
}
|
models/stylegan2/op/upfirdn2d.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.nn import functional as F
|
6 |
+
# from . import upfirdn2d as upfirdn2d_op
|
7 |
+
from torch.utils.cpp_extension import load
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
upfirdn2d_op = load(
|
11 |
+
'upfirdn2d',
|
12 |
+
sources=[
|
13 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
14 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class UpFirDn2dBackward(Function):
|
20 |
+
@staticmethod
|
21 |
+
def forward(
|
22 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
23 |
+
):
|
24 |
+
up_x, up_y = up
|
25 |
+
down_x, down_y = down
|
26 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
27 |
+
|
28 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
29 |
+
|
30 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
31 |
+
grad_output,
|
32 |
+
grad_kernel,
|
33 |
+
down_x,
|
34 |
+
down_y,
|
35 |
+
up_x,
|
36 |
+
up_y,
|
37 |
+
g_pad_x0,
|
38 |
+
g_pad_x1,
|
39 |
+
g_pad_y0,
|
40 |
+
g_pad_y1,
|
41 |
+
)
|
42 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
43 |
+
|
44 |
+
ctx.save_for_backward(kernel)
|
45 |
+
|
46 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
47 |
+
|
48 |
+
ctx.up_x = up_x
|
49 |
+
ctx.up_y = up_y
|
50 |
+
ctx.down_x = down_x
|
51 |
+
ctx.down_y = down_y
|
52 |
+
ctx.pad_x0 = pad_x0
|
53 |
+
ctx.pad_x1 = pad_x1
|
54 |
+
ctx.pad_y0 = pad_y0
|
55 |
+
ctx.pad_y1 = pad_y1
|
56 |
+
ctx.in_size = in_size
|
57 |
+
ctx.out_size = out_size
|
58 |
+
|
59 |
+
return grad_input
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def backward(ctx, gradgrad_input):
|
63 |
+
kernel, = ctx.saved_tensors
|
64 |
+
|
65 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
66 |
+
|
67 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
68 |
+
gradgrad_input,
|
69 |
+
kernel,
|
70 |
+
ctx.up_x,
|
71 |
+
ctx.up_y,
|
72 |
+
ctx.down_x,
|
73 |
+
ctx.down_y,
|
74 |
+
ctx.pad_x0,
|
75 |
+
ctx.pad_x1,
|
76 |
+
ctx.pad_y0,
|
77 |
+
ctx.pad_y1,
|
78 |
+
)
|
79 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
80 |
+
gradgrad_out = gradgrad_out.view(
|
81 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
82 |
+
)
|
83 |
+
|
84 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
85 |
+
|
86 |
+
|
87 |
+
class UpFirDn2d(Function):
|
88 |
+
@staticmethod
|
89 |
+
def forward(ctx, input, kernel, up, down, pad):
|
90 |
+
up_x, up_y = up
|
91 |
+
down_x, down_y = down
|
92 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
93 |
+
|
94 |
+
kernel_h, kernel_w = kernel.shape
|
95 |
+
batch, channel, in_h, in_w = input.shape
|
96 |
+
ctx.in_size = input.shape
|
97 |
+
|
98 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
99 |
+
|
100 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
101 |
+
|
102 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
103 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
104 |
+
ctx.out_size = (out_h, out_w)
|
105 |
+
|
106 |
+
ctx.up = (up_x, up_y)
|
107 |
+
ctx.down = (down_x, down_y)
|
108 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
109 |
+
|
110 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
111 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
112 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
113 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
114 |
+
|
115 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
116 |
+
|
117 |
+
out = upfirdn2d_op.upfirdn2d(
|
118 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
119 |
+
)
|
120 |
+
# out = out.view(major, out_h, out_w, minor)
|
121 |
+
out = out.view(-1, channel, out_h, out_w)
|
122 |
+
|
123 |
+
return out
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def backward(ctx, grad_output):
|
127 |
+
kernel, grad_kernel = ctx.saved_tensors
|
128 |
+
|
129 |
+
grad_input = UpFirDn2dBackward.apply(
|
130 |
+
grad_output,
|
131 |
+
kernel,
|
132 |
+
grad_kernel,
|
133 |
+
ctx.up,
|
134 |
+
ctx.down,
|
135 |
+
ctx.pad,
|
136 |
+
ctx.g_pad,
|
137 |
+
ctx.in_size,
|
138 |
+
ctx.out_size,
|
139 |
+
)
|
140 |
+
|
141 |
+
return grad_input, None, None, None, None
|
142 |
+
|
143 |
+
|
144 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
145 |
+
out = UpFirDn2d.apply(
|
146 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
147 |
+
)
|
148 |
+
|
149 |
+
return out
|
150 |
+
|
151 |
+
|
152 |
+
def upfirdn2d_native(
|
153 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
154 |
+
):
|
155 |
+
_, in_h, in_w, minor = input.shape
|
156 |
+
kernel_h, kernel_w = kernel.shape
|
157 |
+
|
158 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
159 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
160 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
161 |
+
|
162 |
+
out = F.pad(
|
163 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
164 |
+
)
|
165 |
+
out = out[
|
166 |
+
:,
|
167 |
+
max(-pad_y0, 0): out.shape[1] - max(-pad_y1, 0),
|
168 |
+
max(-pad_x0, 0): out.shape[2] - max(-pad_x1, 0),
|
169 |
+
:,
|
170 |
+
]
|
171 |
+
|
172 |
+
out = out.permute(0, 3, 1, 2)
|
173 |
+
out = out.reshape(
|
174 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
175 |
+
)
|
176 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
177 |
+
out = F.conv2d(out, w)
|
178 |
+
out = out.reshape(
|
179 |
+
-1,
|
180 |
+
minor,
|
181 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
182 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
183 |
+
)
|
184 |
+
out = out.permute(0, 2, 3, 1)
|
185 |
+
|
186 |
+
return out[:, ::down_y, ::down_x, :]
|
models/stylegan2/op/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
19 |
+
int c = a / b;
|
20 |
+
|
21 |
+
if (c * b > a) {
|
22 |
+
c--;
|
23 |
+
}
|
24 |
+
|
25 |
+
return c;
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
struct UpFirDn2DKernelParams {
|
30 |
+
int up_x;
|
31 |
+
int up_y;
|
32 |
+
int down_x;
|
33 |
+
int down_y;
|
34 |
+
int pad_x0;
|
35 |
+
int pad_x1;
|
36 |
+
int pad_y0;
|
37 |
+
int pad_y1;
|
38 |
+
|
39 |
+
int major_dim;
|
40 |
+
int in_h;
|
41 |
+
int in_w;
|
42 |
+
int minor_dim;
|
43 |
+
int kernel_h;
|
44 |
+
int kernel_w;
|
45 |
+
int out_h;
|
46 |
+
int out_w;
|
47 |
+
int loop_major;
|
48 |
+
int loop_x;
|
49 |
+
};
|
50 |
+
|
51 |
+
|
52 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
53 |
+
__global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
|
54 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
55 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
56 |
+
|
57 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
58 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
59 |
+
|
60 |
+
int minor_idx = blockIdx.x;
|
61 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
62 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
63 |
+
tile_out_y *= tile_out_h;
|
64 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
65 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
66 |
+
|
67 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
|
68 |
+
return;
|
69 |
+
}
|
70 |
+
|
71 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
|
72 |
+
int ky = tap_idx / kernel_w;
|
73 |
+
int kx = tap_idx - ky * kernel_w;
|
74 |
+
scalar_t v = 0.0;
|
75 |
+
|
76 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
77 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
78 |
+
}
|
79 |
+
|
80 |
+
sk[ky][kx] = v;
|
81 |
+
}
|
82 |
+
|
83 |
+
for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
|
84 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
|
85 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
86 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
87 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
88 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
|
92 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
|
93 |
+
int rel_in_y = in_idx / tile_in_w;
|
94 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
95 |
+
int in_x = rel_in_x + tile_in_x;
|
96 |
+
int in_y = rel_in_y + tile_in_y;
|
97 |
+
|
98 |
+
scalar_t v = 0.0;
|
99 |
+
|
100 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
101 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
|
102 |
+
}
|
103 |
+
|
104 |
+
sx[rel_in_y][rel_in_x] = v;
|
105 |
+
}
|
106 |
+
|
107 |
+
__syncthreads();
|
108 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
|
109 |
+
int rel_out_y = out_idx / tile_out_w;
|
110 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
111 |
+
int out_x = rel_out_x + tile_out_x;
|
112 |
+
int out_y = rel_out_y + tile_out_y;
|
113 |
+
|
114 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
115 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
116 |
+
int in_x = floor_div(mid_x, up_x);
|
117 |
+
int in_y = floor_div(mid_y, up_y);
|
118 |
+
int rel_in_x = in_x - tile_in_x;
|
119 |
+
int rel_in_y = in_y - tile_in_y;
|
120 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
121 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
122 |
+
|
123 |
+
scalar_t v = 0.0;
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
127 |
+
#pragma unroll
|
128 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
129 |
+
v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
130 |
+
|
131 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
132 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
141 |
+
int up_x, int up_y, int down_x, int down_y,
|
142 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
143 |
+
int curDevice = -1;
|
144 |
+
cudaGetDevice(&curDevice);
|
145 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
146 |
+
|
147 |
+
UpFirDn2DKernelParams p;
|
148 |
+
|
149 |
+
auto x = input.contiguous();
|
150 |
+
auto k = kernel.contiguous();
|
151 |
+
|
152 |
+
p.major_dim = x.size(0);
|
153 |
+
p.in_h = x.size(1);
|
154 |
+
p.in_w = x.size(2);
|
155 |
+
p.minor_dim = x.size(3);
|
156 |
+
p.kernel_h = k.size(0);
|
157 |
+
p.kernel_w = k.size(1);
|
158 |
+
p.up_x = up_x;
|
159 |
+
p.up_y = up_y;
|
160 |
+
p.down_x = down_x;
|
161 |
+
p.down_y = down_y;
|
162 |
+
p.pad_x0 = pad_x0;
|
163 |
+
p.pad_x1 = pad_x1;
|
164 |
+
p.pad_y0 = pad_y0;
|
165 |
+
p.pad_y1 = pad_y1;
|
166 |
+
|
167 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
|
168 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
|
169 |
+
|
170 |
+
auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
171 |
+
|
172 |
+
int mode = -1;
|
173 |
+
|
174 |
+
int tile_out_h;
|
175 |
+
int tile_out_w;
|
176 |
+
|
177 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
178 |
+
mode = 1;
|
179 |
+
tile_out_h = 16;
|
180 |
+
tile_out_w = 64;
|
181 |
+
}
|
182 |
+
|
183 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
|
184 |
+
mode = 2;
|
185 |
+
tile_out_h = 16;
|
186 |
+
tile_out_w = 64;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
190 |
+
mode = 3;
|
191 |
+
tile_out_h = 16;
|
192 |
+
tile_out_w = 64;
|
193 |
+
}
|
194 |
+
|
195 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
196 |
+
mode = 4;
|
197 |
+
tile_out_h = 16;
|
198 |
+
tile_out_w = 64;
|
199 |
+
}
|
200 |
+
|
201 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
202 |
+
mode = 5;
|
203 |
+
tile_out_h = 8;
|
204 |
+
tile_out_w = 32;
|
205 |
+
}
|
206 |
+
|
207 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
208 |
+
mode = 6;
|
209 |
+
tile_out_h = 8;
|
210 |
+
tile_out_w = 32;
|
211 |
+
}
|
212 |
+
|
213 |
+
dim3 block_size;
|
214 |
+
dim3 grid_size;
|
215 |
+
|
216 |
+
if (tile_out_h > 0 && tile_out_w) {
|
217 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
218 |
+
p.loop_x = 1;
|
219 |
+
block_size = dim3(32 * 8, 1, 1);
|
220 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
221 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
222 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
223 |
+
}
|
224 |
+
|
225 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
226 |
+
switch (mode) {
|
227 |
+
case 1:
|
228 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
229 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
230 |
+
);
|
231 |
+
|
232 |
+
break;
|
233 |
+
|
234 |
+
case 2:
|
235 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
236 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
237 |
+
);
|
238 |
+
|
239 |
+
break;
|
240 |
+
|
241 |
+
case 3:
|
242 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
243 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
244 |
+
);
|
245 |
+
|
246 |
+
break;
|
247 |
+
|
248 |
+
case 4:
|
249 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
250 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
251 |
+
);
|
252 |
+
|
253 |
+
break;
|
254 |
+
|
255 |
+
case 5:
|
256 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
257 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
258 |
+
);
|
259 |
+
|
260 |
+
break;
|
261 |
+
|
262 |
+
case 6:
|
263 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
264 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
265 |
+
);
|
266 |
+
|
267 |
+
break;
|
268 |
+
}
|
269 |
+
});
|
270 |
+
|
271 |
+
return out;
|
272 |
+
}
|
models/stylegene/__init__.py
ADDED
File without changes
|
models/stylegene/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (145 Bytes). View file
|
|
models/stylegene/__pycache__/api.cpython-39.pyc
ADDED
Binary file (3.28 kB). View file
|
|
models/stylegene/api.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from models.stylegan2.model import Generator
|
5 |
+
from models.encoders.psp_encoders import Encoder4Editing
|
6 |
+
from models.stylegene.model import MappingSub2W, MappingW2Sub
|
7 |
+
from models.stylegene.util import get_keys, requires_grad, load_img
|
8 |
+
from models.stylegene.gene_pool import GenePoolFactory
|
9 |
+
from models.stylegene.gene_crossover_mutation import fuse_latent
|
10 |
+
from models.stylegene.fair_face_model import init_fair_model, predict_race
|
11 |
+
from configs import path_ckpt_e4e, path_ckpt_stylegan2, path_ckpt_stylegene, path_ckpt_genepool, path_dataset_ffhq
|
12 |
+
from preprocess.align_images import align_face
|
13 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
14 |
+
|
15 |
+
|
16 |
+
def init_model(image_size=1024, latent_dim=512):
|
17 |
+
ckp = torch.load(path_ckpt_e4e, map_location='cpu')
|
18 |
+
encoder = Encoder4Editing(50, 'ir_se', image_size).eval()
|
19 |
+
encoder.load_state_dict(get_keys(ckp, 'encoder'), strict=True)
|
20 |
+
mean_latent = ckp['latent_avg'].to('cpu')
|
21 |
+
mean_latent.unsqueeze_(0)
|
22 |
+
|
23 |
+
generator = Generator(image_size, latent_dim, 8)
|
24 |
+
checkpoint = torch.load(path_ckpt_stylegan2, map_location='cpu')
|
25 |
+
generator.load_state_dict(checkpoint["g_ema"], strict=False)
|
26 |
+
generator.eval()
|
27 |
+
sub2w = MappingSub2W(N=18).eval()
|
28 |
+
w2sub34 = MappingW2Sub(N=18).eval()
|
29 |
+
ckp = torch.load(path_ckpt_stylegene, map_location='cpu')
|
30 |
+
w2sub34.load_state_dict(get_keys(ckp, 'w2sub34'))
|
31 |
+
sub2w.load_state_dict(get_keys(ckp, 'sub2w'))
|
32 |
+
|
33 |
+
requires_grad(sub2w, False)
|
34 |
+
requires_grad(w2sub34, False)
|
35 |
+
requires_grad(encoder, False)
|
36 |
+
requires_grad(generator, False)
|
37 |
+
return encoder, generator, sub2w, w2sub34, mean_latent
|
38 |
+
|
39 |
+
|
40 |
+
# init model
|
41 |
+
encoder, generator, sub2w, w2sub34, mean_latent = init_model()
|
42 |
+
encoder, generator, sub2w, w2sub34, mean_latent = encoder.to(device), generator.to(device), sub2w.to(
|
43 |
+
device), w2sub34.to(device), mean_latent.to(device)
|
44 |
+
model_fair_7 = init_fair_model(device) # init FairFace model
|
45 |
+
|
46 |
+
# load a GenePool
|
47 |
+
geneFactor = GenePoolFactory(root_ffhq=path_dataset_ffhq, device=device, mean_latent=mean_latent, max_sample=300)
|
48 |
+
geneFactor.pools = torch.load(path_ckpt_genepool)
|
49 |
+
print("gene pool loaded!")
|
50 |
+
|
51 |
+
|
52 |
+
def tensor2rgb(tensor):
|
53 |
+
tensor = (tensor * 0.5 + 0.5) * 255
|
54 |
+
tensor = torch.clip(tensor, 0, 255).squeeze(0)
|
55 |
+
tensor = tensor.detach().cpu().numpy().transpose(1, 2, 0)
|
56 |
+
tensor = tensor.astype(np.uint8)
|
57 |
+
return tensor
|
58 |
+
|
59 |
+
|
60 |
+
def generate_child(w18_F, w18_M, random_fakes, gamma=0.46, eta=0.4):
|
61 |
+
w18_syn = fuse_latent(w2sub34, sub2w, w18_F=w18_F, w18_M=w18_M,
|
62 |
+
random_fakes=random_fakes, fixed_gamma=gamma, fixed_eta=eta)
|
63 |
+
|
64 |
+
img_C, _ = generator([w18_syn], return_latents=True, input_is_latent=True)
|
65 |
+
return img_C, w18_syn
|
66 |
+
|
67 |
+
|
68 |
+
def synthesize_descendant(pF, pM, attributes=None):
|
69 |
+
gender_all = ['male', 'female']
|
70 |
+
ages_all = ['0-2', '3-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70+']
|
71 |
+
if attributes is None:
|
72 |
+
attributes = {'age': ages_all[0], 'gender': gender_all[0], 'gamma': 0.47, 'eta': 0.4}
|
73 |
+
imgF = align_face(pF)
|
74 |
+
imgM = align_face(pM)
|
75 |
+
imgF = load_img(imgF)
|
76 |
+
imgM = load_img(imgM)
|
77 |
+
imgF, imgM = imgF.to(device), imgM.to(device)
|
78 |
+
|
79 |
+
father_race, _, _, _ = predict_race(model_fair_7, imgF.clone(), imgF.device)
|
80 |
+
mother_race, _, _, _ = predict_race(model_fair_7, imgM.clone(), imgM.device)
|
81 |
+
|
82 |
+
w18_1 = encoder(F.interpolate(imgF, size=(256, 256))) + mean_latent
|
83 |
+
w18_2 = encoder(F.interpolate(imgM, size=(256, 256))) + mean_latent
|
84 |
+
|
85 |
+
random_fakes = []
|
86 |
+
for r in list({father_race, mother_race}): # search RFGs from Gene Pool
|
87 |
+
random_fakes = random_fakes + geneFactor(encoder, w2sub34, attributes['age'], attributes['gender'], r)
|
88 |
+
img_C, w18_syn = generate_child(w18_1.clone(), w18_2.clone(), random_fakes,
|
89 |
+
gamma=attributes['gamma'], eta=attributes['eta'])
|
90 |
+
img_C = tensor2rgb(img_C)
|
91 |
+
img_F = tensor2rgb(imgF)
|
92 |
+
img_M = tensor2rgb(imgM)
|
93 |
+
|
94 |
+
return img_F, img_M, img_C
|
models/stylegene/data_util.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (C) 2021 NVIDIA Corporation. All rights reserved.
|
3 |
+
Licensed under The MIT License (MIT)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
6 |
+
this software and associated documentation files (the "Software"), to deal in
|
7 |
+
the Software without restriction, including without limitation the rights to
|
8 |
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
9 |
+
the Software, and to permit persons to whom the Software is furnished to do so,
|
10 |
+
subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
17 |
+
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
18 |
+
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
19 |
+
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
20 |
+
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
21 |
+
"""
|
22 |
+
|
23 |
+
face_class = ['background', 'head', 'head***cheek', 'head***chin', 'head***ear', 'head***ear***helix',
|
24 |
+
'head***ear***lobule', 'head***eye***botton lid', 'head***eye***eyelashes', 'head***eye***iris',
|
25 |
+
'head***eye***pupil', 'head***eye***sclera', 'head***eye***tear duct', 'head***eye***top lid',
|
26 |
+
'head***eyebrow', 'head***forehead', 'head***frown', 'head***hair', 'head***hair***sideburns',
|
27 |
+
'head***jaw', 'head***moustache', 'head***mouth***inferior lip', 'head***mouth***oral comisure',
|
28 |
+
'head***mouth***superior lip', 'head***mouth***teeth', 'head***neck', 'head***nose',
|
29 |
+
'head***nose***ala of nose', 'head***nose***bridge', 'head***nose***nose tip', 'head***nose***nostril',
|
30 |
+
'head***philtrum', 'head***temple', 'head***wrinkles']
|
31 |
+
face_must = ['head***forehead', 'head***frown', 'head***nose***bridge', 'head***nose', 'head***nose***ala of nose',
|
32 |
+
'head***nose***nose tip', 'head***nose***nostril', 'head***mouth***inferior lip',
|
33 |
+
'head***mouth***superior lip', 'head***chin', 'head***eye***top lid', 'head***eye***pupil',
|
34 |
+
'head***eye***iris', 'head***eye***tear duct']
|
35 |
+
|
36 |
+
face_shape = ['head', 'head***chin', 'head***jaw', 'head***moustache', 'head***cheek']
|
models/stylegene/fair_face_model.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from torch import nn
|
5 |
+
import torchvision
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torchvision import transforms
|
8 |
+
from configs import path_ckpt_fairface
|
9 |
+
|
10 |
+
# code adapted from https://github.com/dchen236/FairFace
|
11 |
+
|
12 |
+
def init_fair_model(device, path_ckpt=None):
|
13 |
+
if path_ckpt is None:
|
14 |
+
path_ckpt = path_ckpt_fairface
|
15 |
+
model_fair_7 = torchvision.models.resnet34(pretrained=False)
|
16 |
+
model_fair_7.fc = nn.Linear(model_fair_7.fc.in_features, 18)
|
17 |
+
model_fair_7.load_state_dict(
|
18 |
+
torch.load(path_ckpt))
|
19 |
+
model_fair_7 = model_fair_7.to(device)
|
20 |
+
model_fair_7.eval()
|
21 |
+
return model_fair_7
|
22 |
+
|
23 |
+
|
24 |
+
def predict_race(model_fair_7, path_img, device):
|
25 |
+
if type(path_img) == str:
|
26 |
+
trans = transforms.Compose([
|
27 |
+
transforms.Resize((224, 224)),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
30 |
+
])
|
31 |
+
image = Image.open(path_img)
|
32 |
+
image = trans(image)
|
33 |
+
image = image.view(1, 3, 224, 224) # reshape image to match model dimensions (1 batch size)
|
34 |
+
elif type(path_img) == torch.Tensor:
|
35 |
+
trans = transforms.Compose([
|
36 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
37 |
+
])
|
38 |
+
image = F.interpolate(path_img, (224, 224))
|
39 |
+
image = image * 0.5 + 0.5
|
40 |
+
image = trans(image)
|
41 |
+
image = image.view(1, 3, 224, 224)
|
42 |
+
|
43 |
+
image = image.to(device)
|
44 |
+
|
45 |
+
outputs = model_fair_7(image)
|
46 |
+
outputs = outputs.cpu().detach().numpy()
|
47 |
+
outputs = np.squeeze(outputs)
|
48 |
+
|
49 |
+
race_outputs = outputs[:7]
|
50 |
+
gender_outputs = outputs[7:9]
|
51 |
+
age_outputs = outputs[9:18]
|
52 |
+
|
53 |
+
race_score = np.exp(race_outputs) / np.sum(np.exp(race_outputs))
|
54 |
+
gender_score = np.exp(gender_outputs) / np.sum(np.exp(gender_outputs))
|
55 |
+
age_score = np.exp(age_outputs) / np.sum(np.exp(age_outputs))
|
56 |
+
|
57 |
+
race_pred = np.argmax(race_score)
|
58 |
+
gender_pred = np.argmax(gender_score)
|
59 |
+
age_pred = np.argmax(age_score)
|
60 |
+
race_label = ['White', 'Black', 'Latino_Hispanic', 'East Asian', 'Southeast Asian', 'Indian', 'Middle Eastern']
|
61 |
+
return race_label[race_pred], race_pred, gender_pred, age_pred
|
models/stylegene/gene_crossover_mutation.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from .data_util import face_class, face_shape
|
3 |
+
import random
|
4 |
+
|
5 |
+
|
6 |
+
def reparameterize(mu, logvar):
|
7 |
+
"""
|
8 |
+
Reparameterization trick to sample from N(mu, var) from
|
9 |
+
N(0,1).
|
10 |
+
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
|
11 |
+
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
|
12 |
+
:return: (Tensor) [B x D]
|
13 |
+
"""
|
14 |
+
std = torch.exp(0.5 * logvar)
|
15 |
+
eps = torch.randn_like(std)
|
16 |
+
|
17 |
+
return eps * std + mu
|
18 |
+
|
19 |
+
|
20 |
+
def mix(w18_F, w18_M, w18_syn):
|
21 |
+
for k in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]:
|
22 |
+
w18_syn[:, k, :] = w18_F[:, k, :] * 0.5 + w18_M[:, k, :] * 0.5
|
23 |
+
return w18_syn
|
24 |
+
|
25 |
+
|
26 |
+
def fuse_latent(w2sub34, sub2w, w18_F, w18_M, random_fakes, fixed_gamma=0.47, fixed_eta=0.4):
|
27 |
+
device = w18_F.device
|
28 |
+
|
29 |
+
mu_F, var_F, sub34_F = w2sub34(w18_F)
|
30 |
+
mu_M, var_M, sub34_M = w2sub34(w18_M)
|
31 |
+
new_sub34 = torch.zeros_like(sub34_F, dtype=torch.float, device=device)
|
32 |
+
|
33 |
+
if len(random_fakes) == 0: # EXCEPTION HANDLER (No matching gene pool)
|
34 |
+
random_fakes = [(mu_F.cpu(), var_F.cpu())] + [(mu_M.cpu(), var_M.cpu())]
|
35 |
+
|
36 |
+
# region genetic variation weights
|
37 |
+
weights = {}
|
38 |
+
for i in face_class:
|
39 |
+
weights[i] = (random.uniform(0, 1 - float(fixed_gamma)), float(fixed_gamma))
|
40 |
+
|
41 |
+
# select genetic regions
|
42 |
+
cur_class = random.sample(face_class, int(len(face_class) * (1 - float(fixed_eta))))
|
43 |
+
|
44 |
+
for i, classname in enumerate(face_class):
|
45 |
+
if classname == 'background':
|
46 |
+
new_sub34[:, :, i, :] = reparameterize(mu_F[:, :, i, :], var_F[:, :, i, :])
|
47 |
+
continue
|
48 |
+
|
49 |
+
if classname in cur_class: # # corresponding to t = 0 in Eq.10
|
50 |
+
fake_mu, fake_var = random.choice(random_fakes)
|
51 |
+
w_i, b_i = weights[classname]
|
52 |
+
new_sub34[:, :, i, :] = reparameterize(
|
53 |
+
mu_F[:, :, i, :] * w_i + fake_mu[:, :, i, :].to(device) * b_i + mu_M[:, :, i, :] * (1 - w_i - b_i),
|
54 |
+
var_F[:, :, i, :] * w_i + fake_var[:, :, i, :].to(device) * b_i + var_M[:, :, i, :] * (1 - w_i - b_i))
|
55 |
+
else: # corresponding to t = 1 in Eq.10
|
56 |
+
fake_mu, fake_var = random.choice(random_fakes)
|
57 |
+
fake_latent = reparameterize(fake_mu[:, :, i, :], fake_var[:, :, i, :]).to(device)
|
58 |
+
var = fake_latent
|
59 |
+
new_sub34[:, :, i, :] = new_sub34[:, :, i, :] + var
|
60 |
+
w18_syn = sub2w(new_sub34)
|
61 |
+
|
62 |
+
w18_syn = mix(w18_F, w18_M, w18_syn)
|
63 |
+
|
64 |
+
return w18_syn
|
models/stylegene/gene_pool.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import pandas as pd
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from .util import load_img
|
7 |
+
from configs import path_csv_ffhq_attritube
|
8 |
+
|
9 |
+
|
10 |
+
class GenePoolFactory(object):
|
11 |
+
def __init__(self, root_ffhq, device, mean_latent, max_sample=100):
|
12 |
+
self.device = device
|
13 |
+
self.mean_latent = mean_latent
|
14 |
+
self.root_ffhq = root_ffhq
|
15 |
+
self.max_sample = max_sample
|
16 |
+
|
17 |
+
self.pools = {}
|
18 |
+
path_ffhq_attributes = path_csv_ffhq_attritube
|
19 |
+
self.df = pd.read_csv(path_ffhq_attributes)
|
20 |
+
self.df.replace('Male', 'male', inplace=True)
|
21 |
+
self.df.replace('Female', 'female', inplace=True)
|
22 |
+
|
23 |
+
def __call__(self, encoder, w2sub34, age, gender, race):
|
24 |
+
keyname = f'{age}-{gender}-{race}'
|
25 |
+
if keyname in self.pools.keys():
|
26 |
+
return self.pools[keyname]
|
27 |
+
elif self.root_ffhq is not None:
|
28 |
+
result = self.df.query(f'gender == "{gender}" and age == "{age}" and race == "{race}"')
|
29 |
+
result = result[['file_id']].values
|
30 |
+
tmp = []
|
31 |
+
random.shuffle(result)
|
32 |
+
for fid in result[:self.max_sample]:
|
33 |
+
filename = format(int(fid[0]), '05d') + ".png"
|
34 |
+
img = load_img(os.path.join(self.root_ffhq, filename))
|
35 |
+
img = img.to(self.device)
|
36 |
+
w18_1 = encoder(F.interpolate(img, size=(256, 256))) + self.mean_latent
|
37 |
+
mu, var, sub34_1 = w2sub34(w18_1)
|
38 |
+
tmp.append((mu.cpu(), var.cpu()))
|
39 |
+
self.pools[keyname] = tmp
|
40 |
+
return self.pools[keyname]
|
41 |
+
else:
|
42 |
+
return []
|
models/stylegene/model.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
from einops.layers.torch import Rearrange, Reduce
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
pair = lambda x: x if isinstance(x, tuple) else (x, x)
|
8 |
+
|
9 |
+
|
10 |
+
class PreNormResidual(nn.Module):
|
11 |
+
def __init__(self, dim, fn):
|
12 |
+
super().__init__()
|
13 |
+
self.fn = fn
|
14 |
+
self.norm = nn.LayerNorm(dim)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
return self.fn(self.norm(x)) + x
|
18 |
+
|
19 |
+
|
20 |
+
def FeedForward(dim, expansion_factor=4, dropout=0., dense=nn.Linear):
|
21 |
+
inner_dim = int(dim * expansion_factor)
|
22 |
+
return nn.Sequential(
|
23 |
+
dense(dim, inner_dim),
|
24 |
+
nn.GELU(),
|
25 |
+
nn.Dropout(dropout),
|
26 |
+
dense(inner_dim, dim),
|
27 |
+
nn.Dropout(dropout)
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
class MappingSub2W(nn.Module):
|
32 |
+
def __init__(self, N=8, dim=512, depth=6, expansion_factor=4., expansion_factor_token=0.5, dropout=0.1):
|
33 |
+
super(MappingSub2W, self).__init__()
|
34 |
+
num_patches = N * 34
|
35 |
+
|
36 |
+
chan_first, chan_last = partial(nn.Conv1d, kernel_size=1), nn.Linear
|
37 |
+
self.layer = nn.Sequential(
|
38 |
+
Rearrange('b c h w -> b (c h) w'),
|
39 |
+
*[nn.Sequential(
|
40 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
41 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
42 |
+
) for _ in range(depth)],
|
43 |
+
nn.LayerNorm(dim),
|
44 |
+
Rearrange('b c h -> b h c'),
|
45 |
+
nn.Linear(34 * N, 34 * N),
|
46 |
+
nn.LayerNorm(34 * N),
|
47 |
+
nn.GELU(),
|
48 |
+
nn.Linear(34 * N, N),
|
49 |
+
Rearrange('b h c -> b c h')
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
return self.layer(x)
|
54 |
+
|
55 |
+
|
56 |
+
class MappingW2Sub(nn.Module):
|
57 |
+
def __init__(self, N=8, dim=512, depth=8, expansion_factor=4., expansion_factor_token=0.5, dropout=0.1):
|
58 |
+
super(MappingW2Sub, self).__init__()
|
59 |
+
self.N = N
|
60 |
+
num_patches = N * 34
|
61 |
+
chan_first, chan_last = partial(nn.Conv1d, kernel_size=1), nn.Linear
|
62 |
+
|
63 |
+
self.layer = nn.Sequential(
|
64 |
+
Rearrange('b c h -> b h c'),
|
65 |
+
nn.Linear(N, num_patches),
|
66 |
+
Rearrange('b h c -> b c h'),
|
67 |
+
*[nn.Sequential(
|
68 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
69 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
70 |
+
) for _ in range(depth)],
|
71 |
+
nn.LayerNorm(dim)
|
72 |
+
)
|
73 |
+
self.mu_fc = nn.Sequential(
|
74 |
+
*[nn.Sequential(
|
75 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
76 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
77 |
+
) for _ in range(2)],
|
78 |
+
nn.LayerNorm(dim),
|
79 |
+
nn.Tanh(),
|
80 |
+
Rearrange('b c h -> b (c h)')
|
81 |
+
)
|
82 |
+
self.var_fc = nn.Sequential(
|
83 |
+
*[nn.Sequential(
|
84 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
85 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
86 |
+
) for _ in range(2)],
|
87 |
+
nn.LayerNorm(dim),
|
88 |
+
nn.Tanh(),
|
89 |
+
Rearrange('b c h -> b (c h)')
|
90 |
+
)
|
91 |
+
|
92 |
+
def reparameterize(self, mu, logvar):
|
93 |
+
"""
|
94 |
+
Reparameterization trick to sample from N(mu, var) from
|
95 |
+
N(0,1).
|
96 |
+
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
|
97 |
+
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
|
98 |
+
:return: (Tensor) [B x D]
|
99 |
+
"""
|
100 |
+
std = torch.exp(0.5 * logvar)
|
101 |
+
eps = torch.randn_like(std)
|
102 |
+
|
103 |
+
return eps * std + mu
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
f = self.layer(x)
|
107 |
+
mu = self.mu_fc(f)
|
108 |
+
var = self.var_fc(f)
|
109 |
+
|
110 |
+
z = self.reparameterize(mu, var)
|
111 |
+
z = rearrange(z, 'a (b c d) -> a b c d', b=self.N, c=34)
|
112 |
+
return rearrange(mu, 'a (b c d) -> a b c d', b=self.N, c=34), rearrange(var, 'a (b c d) -> a b c d',
|
113 |
+
b=self.N, c=34), z
|
114 |
+
|
115 |
+
|
116 |
+
class HeadEncoder(nn.Module):
|
117 |
+
def __init__(self, N=8, dim=512, depth=2, expansion_factor=4., expansion_factor_token=0.5, dropout=0.1):
|
118 |
+
super(HeadEncoder, self).__init__()
|
119 |
+
channels = [32, 64, 64, 64]
|
120 |
+
self.N = N
|
121 |
+
num_patches = N
|
122 |
+
chan_first, chan_last = partial(nn.Conv1d, kernel_size=1), nn.Linear
|
123 |
+
|
124 |
+
self.s1 = nn.Sequential(
|
125 |
+
nn.Conv2d(channels[0], channels[1], kernel_size=5, padding=2, stride=2),
|
126 |
+
nn.BatchNorm2d(channels[1]),
|
127 |
+
nn.LeakyReLU(),
|
128 |
+
nn.Conv2d(channels[1], channels[2], kernel_size=5, padding=2, stride=2),
|
129 |
+
nn.BatchNorm2d(channels[2]),
|
130 |
+
nn.LeakyReLU(),
|
131 |
+
nn.Conv2d(channels[2], channels[3], kernel_size=5, padding=2, stride=2),
|
132 |
+
nn.BatchNorm2d(channels[3]),
|
133 |
+
nn.LeakyReLU())
|
134 |
+
self.mlp1 = nn.Linear(channels[3] * 8 * 8, 512)
|
135 |
+
|
136 |
+
self.up_N = nn.Linear(1, N)
|
137 |
+
|
138 |
+
self.mu_fc = nn.Sequential(
|
139 |
+
*[nn.Sequential(
|
140 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
141 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
142 |
+
) for _ in range(depth)],
|
143 |
+
nn.LayerNorm(dim),
|
144 |
+
nn.Tanh()
|
145 |
+
)
|
146 |
+
self.var_fc = nn.Sequential(
|
147 |
+
*[nn.Sequential(
|
148 |
+
PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)),
|
149 |
+
PreNormResidual(dim, FeedForward(dim, expansion_factor_token, dropout, chan_last))
|
150 |
+
) for _ in range(depth)],
|
151 |
+
nn.LayerNorm(dim),
|
152 |
+
nn.Tanh()
|
153 |
+
)
|
154 |
+
|
155 |
+
def reparameterize(self, mu, logvar):
|
156 |
+
"""
|
157 |
+
Reparameterization trick to sample from N(mu, var) from
|
158 |
+
N(0,1).
|
159 |
+
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
|
160 |
+
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
|
161 |
+
:return: (Tensor) [B x D]
|
162 |
+
"""
|
163 |
+
std = torch.exp(0.5 * logvar)
|
164 |
+
eps = torch.randn_like(std)
|
165 |
+
return eps * std + mu
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
feature = self.s1(x)
|
169 |
+
s2 = torch.flatten(feature, start_dim=1)
|
170 |
+
s2 = self.mlp1(s2).unsqueeze(2)
|
171 |
+
s2 = self.up_N(s2)
|
172 |
+
s2 = rearrange(s2, 'b h c -> b c h')
|
173 |
+
mu = self.mu_fc(s2)
|
174 |
+
var = self.var_fc(s2)
|
175 |
+
z = self.reparameterize(mu, var)
|
176 |
+
return mu, var, z
|
177 |
+
|
178 |
+
|
179 |
+
class RegionEncoder(nn.Module):
|
180 |
+
def __init__(self, N=8):
|
181 |
+
super(RegionEncoder, self).__init__()
|
182 |
+
channels = [8, 16, 32, 32, 64, 64]
|
183 |
+
self.s1 = nn.Conv2d(3, channels[0], kernel_size=3, padding=1, stride=2)
|
184 |
+
self.s2 = nn.Sequential(
|
185 |
+
nn.Conv2d(channels[0], channels[1], kernel_size=3, padding=1, stride=2),
|
186 |
+
nn.BatchNorm2d(channels[1]),
|
187 |
+
nn.LeakyReLU(),
|
188 |
+
nn.Conv2d(channels[1], channels[2], kernel_size=3, padding=1, stride=2),
|
189 |
+
nn.BatchNorm2d(channels[2]),
|
190 |
+
nn.LeakyReLU()
|
191 |
+
)
|
192 |
+
self.heads = nn.ModuleList()
|
193 |
+
for i in range(34):
|
194 |
+
self.heads.append(HeadEncoder(N=N))
|
195 |
+
|
196 |
+
def forward(self, x, all_mask=None):
|
197 |
+
s1 = self.s1(x)
|
198 |
+
s2 = self.s2(s1)
|
199 |
+
result = []
|
200 |
+
mus = []
|
201 |
+
log_vars = []
|
202 |
+
for i, head in enumerate(self.heads):
|
203 |
+
m = all_mask[:, i, :].unsqueeze(1)
|
204 |
+
mu, var, z = head(s2 * m)
|
205 |
+
result.append(z.unsqueeze(2))
|
206 |
+
mus.append(mu.unsqueeze(2))
|
207 |
+
log_vars.append(var.unsqueeze(2))
|
208 |
+
|
209 |
+
return torch.cat(mus, dim=2), torch.cat(log_vars, dim=2), torch.cat(result, dim=2)
|
models/stylegene/util.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
from torchvision import transforms
|
4 |
+
|
5 |
+
|
6 |
+
def requires_grad(model, flag=True):
|
7 |
+
for p in model.parameters():
|
8 |
+
p.requires_grad = flag
|
9 |
+
|
10 |
+
|
11 |
+
def get_keys(d, name):
|
12 |
+
if 'state_dict' in d:
|
13 |
+
d = d['state_dict']
|
14 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
15 |
+
return d_filt
|
16 |
+
|
17 |
+
|
18 |
+
def load_img(path_img, img_size=(256, 256)):
|
19 |
+
transform = transforms.Compose(
|
20 |
+
[transforms.Resize(img_size),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize((0.5, 0.5, 0.5),
|
23 |
+
(0.5, 0.5, 0.5))])
|
24 |
+
if type(path_img) is np.ndarray:
|
25 |
+
img = Image.fromarray(path_img)
|
26 |
+
else:
|
27 |
+
img = Image.open(path_img).convert('RGB')
|
28 |
+
img = transform(img)
|
29 |
+
img.unsqueeze_(0)
|
30 |
+
return img
|
preprocess/__init__.py
ADDED
File without changes
|
preprocess/align_images.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bz2
|
2 |
+
from .face_alignment import image_align
|
3 |
+
from .landmarks_detector import LandmarksDetector
|
4 |
+
from configs import path_ckpt_landmark68
|
5 |
+
|
6 |
+
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
|
7 |
+
|
8 |
+
|
9 |
+
def unpack_bz2(src_path):
|
10 |
+
data = bz2.BZ2File(src_path).read()
|
11 |
+
dst_path = src_path[:-4]
|
12 |
+
with open(dst_path, 'wb') as fp:
|
13 |
+
fp.write(data)
|
14 |
+
return dst_path
|
15 |
+
|
16 |
+
|
17 |
+
def init_landmark():
|
18 |
+
landmarks_model_path = unpack_bz2(path_ckpt_landmark68)
|
19 |
+
landmarks_detector = LandmarksDetector(landmarks_model_path)
|
20 |
+
return landmarks_detector
|
21 |
+
|
22 |
+
|
23 |
+
landmarks_detector = init_landmark()
|
24 |
+
|
25 |
+
|
26 |
+
def align_face(raw_img, output_size=256):
|
27 |
+
try:
|
28 |
+
face_landmarks = landmarks_detector.get_landmarks(raw_img)[0]
|
29 |
+
aligned_face = image_align(raw_img, face_landmarks, output_size=output_size, transform_size=1024)
|
30 |
+
return aligned_face
|
31 |
+
except:
|
32 |
+
return raw_img
|
preprocess/face_alignment.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy.ndimage
|
3 |
+
import os
|
4 |
+
import PIL.Image
|
5 |
+
|
6 |
+
|
7 |
+
def image_align(src, face_landmarks, output_size=1024, transform_size=4096, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
|
8 |
+
# Align function from FFHQ dataset pre-processing step
|
9 |
+
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
|
10 |
+
|
11 |
+
lm = np.array(face_landmarks)
|
12 |
+
lm_chin = lm[0 : 17] # left-right
|
13 |
+
lm_eyebrow_left = lm[17 : 22] # left-right
|
14 |
+
lm_eyebrow_right = lm[22 : 27] # left-right
|
15 |
+
lm_nose = lm[27 : 31] # top-down
|
16 |
+
lm_nostrils = lm[31 : 36] # top-down
|
17 |
+
lm_eye_left = lm[36 : 42] # left-clockwise
|
18 |
+
lm_eye_right = lm[42 : 48] # left-clockwise
|
19 |
+
lm_mouth_outer = lm[48 : 60] # left-clockwise
|
20 |
+
lm_mouth_inner = lm[60 : 68] # left-clockwise
|
21 |
+
|
22 |
+
# Calculate auxiliary vectors.
|
23 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
24 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
25 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
26 |
+
eye_to_eye = eye_right - eye_left
|
27 |
+
mouth_left = lm_mouth_outer[0]
|
28 |
+
mouth_right = lm_mouth_outer[6]
|
29 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
30 |
+
eye_to_mouth = mouth_avg - eye_avg
|
31 |
+
|
32 |
+
# Choose oriented crop rectangle.
|
33 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
34 |
+
x /= np.hypot(*x)
|
35 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
36 |
+
x *= x_scale
|
37 |
+
y = np.flipud(x) * [-y_scale, y_scale]
|
38 |
+
c = eye_avg + eye_to_mouth * em_scale
|
39 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
40 |
+
qsize = np.hypot(*x) * 2
|
41 |
+
|
42 |
+
# Load in-the-wild image.
|
43 |
+
img = PIL.Image.fromarray(src)
|
44 |
+
|
45 |
+
# Shrink.
|
46 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
47 |
+
if shrink > 1:
|
48 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
49 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
50 |
+
quad /= shrink
|
51 |
+
qsize /= shrink
|
52 |
+
|
53 |
+
# Crop.
|
54 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
55 |
+
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
56 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
|
57 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
58 |
+
img = img.crop(crop)
|
59 |
+
quad -= crop[0:2]
|
60 |
+
|
61 |
+
# Pad.
|
62 |
+
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
63 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
|
64 |
+
if enable_padding and max(pad) > border - 4:
|
65 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
66 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
67 |
+
h, w, _ = img.shape
|
68 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
69 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
|
70 |
+
blur = qsize * 0.02
|
71 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
72 |
+
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
|
73 |
+
img = np.uint8(np.clip(np.rint(img), 0, 255))
|
74 |
+
if alpha:
|
75 |
+
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
|
76 |
+
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
|
77 |
+
img = np.concatenate((img, mask), axis=2)
|
78 |
+
img = PIL.Image.fromarray(img, 'RGBA')
|
79 |
+
else:
|
80 |
+
img = PIL.Image.fromarray(img, 'RGB')
|
81 |
+
quad += pad[:2]
|
82 |
+
|
83 |
+
# Transform.
|
84 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
85 |
+
if output_size < transform_size:
|
86 |
+
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
87 |
+
return np.array(img)
|
preprocess/landmarks_detector.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dlib
|
2 |
+
|
3 |
+
|
4 |
+
class LandmarksDetector:
|
5 |
+
def __init__(self, predictor_model_path):
|
6 |
+
"""
|
7 |
+
:param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file
|
8 |
+
"""
|
9 |
+
self.detector = dlib.get_frontal_face_detector() # cnn_face_detection_model_v1 also can be used
|
10 |
+
self.shape_predictor = dlib.shape_predictor(predictor_model_path)
|
11 |
+
|
12 |
+
def get_landmarks(self, img):
|
13 |
+
# img = dlib.load_rgb_image(image) # load from path
|
14 |
+
dets = self.detector(img, 1)
|
15 |
+
|
16 |
+
all_faces = []
|
17 |
+
for detection in dets:
|
18 |
+
try:
|
19 |
+
face_landmarks = [(item.x, item.y) for item in self.shape_predictor(img, detection).parts()]
|
20 |
+
all_faces.append(face_landmarks)
|
21 |
+
except:
|
22 |
+
print("Exception in get_landmarks()!")
|
23 |
+
return all_faces
|
24 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython==0.29.34
|
2 |
+
cytoolz==0.11.0
|
3 |
+
dlib==19.24.0
|
4 |
+
easydict==1.10
|
5 |
+
einops==0.3.2
|
6 |
+
gradio==3.32.0
|
7 |
+
gradio_client==0.2.5
|
8 |
+
huggingface-hub==0.14.1
|
9 |
+
omegaconf==2.2.3
|
10 |
+
onnx==1.12.0
|
11 |
+
onnxruntime==1.9.0
|
12 |
+
opencv-contrib-python==4.5.5.64
|
13 |
+
opencv-python==4.5.4.60
|
14 |
+
opencv-python-headless==4.7.0.72
|
15 |
+
pandas==1.4.4
|
16 |
+
Pillow==9.2.0
|
17 |
+
pytorch-lightning==1.8.1
|
18 |
+
torch==1.12.1
|
19 |
+
torchvision==0.13.1
|