Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,908 Bytes
2422035 f6bd4fa 2422035 c6196a6 2422035 af9852d f6bd4fa 44698e5 6ca9756 dec8cc6 6ca9756 dec8cc6 6ca9756 3659749 b8cecf5 206ba2d 2ab105b b8cecf5 ff3dacd b8cecf5 206ba2d 0e6546e 2422035 92d53c1 2422035 0e7e92c 2422035 7f39688 c6196a6 2422035 66ffc69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from model import Model
from app_edge import create_demo as create_demo_edge
from app_depth import create_demo as create_demo_depth
import os
import torch
import subprocess
# def install_requirements():
# try:
# # subprocess.run(['pip', 'install', 'torch==2.1.2+cu118', '--extra-index-url', 'https://download.pytorch.org/whl/cu118'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# subprocess.run(['pip', 'show', 'torch'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# # result = subprocess.run(['pip', 'install', '-r', 'requirements.txt'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# print("安装成功!")
# # print("输出:", result.stdout.decode('utf-8'))
# except subprocess.CalledProcessError as e:
# print("安装失败!")
# print("错误:", e.stderr.decode('utf-8'))
# install_requirements()
print("Torch version:", torch.__version__)
# hf_hub_download(repo_id='wondervictor/ControlAR',
# filename='canny_MR.safetensors',
# local_dir='./checkpoints/')
# hf_hub_download(repo_id='wondervictor/ControlAR',
# filename='depth_MR.safetensors',
# local_dir='./checkpoints/')
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
ckpt_folder = './checkpoints'
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl")
# dinov2_folder = os.path.join(ckpt_folder, "dinov2-small")
dinov2_folder = os.path.join(ckpt_folder, "dinov2-base")
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder)
hf_hub_download(repo_id="lllyasviel/Annotators", filename="dpt_hybrid-midas-501f0c75.pt", local_dir=ckpt_folder)
hf_hub_download(repo_id="wondervictor/ControlAR", filename="edge_base.safetensors", local_dir=ckpt_folder)
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_base.safetensors", local_dir=ckpt_folder)
hf_hub_download(repo_id="facebook/dinov2-base", filename="config.json", local_dir=dinov2_folder)
hf_hub_download(repo_id="facebook/dinov2-base", filename="preprocessor_config.json", local_dir=dinov2_folder)
hf_hub_download(repo_id="facebook/dinov2-base", filename="pytorch_model.bin", local_dir=dinov2_folder)
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first image in outputs is the condition. The others are the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
model = Model()
# device = "cuda"
# model.to(device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=SHOW_DUPLICATE_BUTTON,
)
with gr.Tabs():
with gr.TabItem("Depth"):
create_demo_depth(model.process_depth)
with gr.TabItem("edge"):
create_demo_edge(model.process_edge)
if __name__ == "__main__":
demo.launch(share=False)
|