File size: 1,397 Bytes
2422035
f6bd4fa
2422035
 
 
 
 
f6bd4fa
 
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from model import Model
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
import os


hf_hub_download('wondervictor/ControlAR', filename='canny_MR.safetensors', cache_dir='./checkpoints/')
hf_hub_download('wondervictor/ControlAR', filename='depth_MR.safetensors', cache_dir='./checkpoints/')


DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR.  \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
model = Model()
device = "cuda"
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=SHOW_DUPLICATE_BUTTON,
    )
    with gr.Tabs():
        with gr.TabItem("Depth"):
            create_demo_depth(model.process_depth)
        with gr.TabItem("Canny"):
            create_demo_canny(model.process_canny)

if __name__ == "__main__":
    demo.queue().launch(share=False, server_name="0.0.0.0")