File size: 24,152 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Modified from:
#   VQGAN:    https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
#   DiT:      https://github.com/facebookresearch/DiT/blob/main/models.py  
#   nanoGPT:  https://github.com/karpathy/nanoGPT/blob/master/model.py
#   llama:    https://github.com/facebookresearch/llama/blob/main/llama/model.py
#   gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
#   PixArt:   https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
from dataclasses import dataclass
from typing import Optional, List


import torch
import torch.nn as nn
from torch.nn import functional as F
from utils.drop_path import DropPath
# from autoregressive.models.vit_adapter import ViT_Adapter
from autoregressive.models.dinov2_adapter import Dinov2_Adapter


def get_causal_mask(seq_length):
    mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool)
    mask = mask.masked_fill(mask, float('-inf'))  
    mask = mask.masked_fill(~mask, float(0.0))  
    return mask

def find_multiple(n: int, k: int):
    if n % k == 0:
        return n
    return n + k - (n % k)

@dataclass
class ModelArgs:
    dim: int = 4096
    n_layer: int = 32
    n_head: int = 32
    n_kv_head: Optional[int] = None
    multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
    ffn_dim_multiplier: Optional[float] = None
    rope_base: float = 10000
    norm_eps: float = 1e-5
    initializer_range: float = 0.02
    
    token_dropout_p: float = 0.1
    attn_dropout_p: float = 0.0
    resid_dropout_p: float = 0.1
    ffn_dropout_p: float = 0.1
    drop_path_rate: float = 0.0

    num_classes: int = 1000
    caption_dim: int = 2048
    class_dropout_prob: float = 0.1
    model_type: str = 'c2i'

    vocab_size: int = 16384
    cls_token_num: int = 1
    block_size: int = 256
    max_batch_size: int = 32
    max_seq_len: int = 2048
    adapter_size: str = 'small'
    condition_type: str = 'canny'



#################################################################################
#                      Embedding Layers for Class Labels                        #
#################################################################################
class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels, drop_ids

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels,drop_ids = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels).unsqueeze(1)
        if (train and use_dropout) or (force_drop_ids is not None):
            return embeddings,drop_ids
        else:
            return embeddings


class ConditionEmbedder(nn.Module):
    """
    Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384):
        super().__init__()
        self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size)
        self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5)
        self.uncond_prob = uncond_prob

    def token_drop(self, caption, force_drop_ids=None, drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            if drop_ids is None:
                drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
        else:
            drop_ids = force_drop_ids == 1

        caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption)
        return caption

    def forward(self, caption, train, force_drop_ids=None, drop_ids=None):
        use_dropout = self.uncond_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            caption = self.token_drop(caption, force_drop_ids, drop_ids)
        embeddings = self.cap_proj(caption)
        return embeddings

#################################################################################
#                      Embedding Layers for Text Feature                        #
#################################################################################
class CaptionEmbedder(nn.Module):
    """
    Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
        super().__init__()
        self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
        self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
        self.uncond_prob = uncond_prob

    def token_drop(self, caption, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
        else:
            drop_ids = force_drop_ids == 1
        caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
        return caption, drop_ids

    def forward(self, caption, train, force_drop_ids=None):
        use_dropout = self.uncond_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            caption, drop_ids = self.token_drop(caption, force_drop_ids)
        embeddings = self.cap_proj(caption)
        if (train and use_dropout) or (force_drop_ids is not None):
            return embeddings,drop_ids
        else:
            return embeddings


class MLP(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
        self.act = nn.GELU(approximate='tanh')
        self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
        
        nn.init.zeros_(self.fc1.weight)
        nn.init.zeros_(self.fc2.weight)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


#################################################################################
#                                  GPT Model                                    #
#################################################################################
class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class FeedForward(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        hidden_dim = 4 * config.dim
        hidden_dim = int(2 * hidden_dim / 3)
        # custom dim factor multiplier
        if config.ffn_dim_multiplier is not None:
            hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
        hidden_dim = find_multiple(hidden_dim, config.multiple_of)

        self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
        self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
        self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)

    def forward(self, x):
        return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))


class KVCache(nn.Module):
    def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
        super().__init__()
        cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
        self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2]
        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val
        v_out[:, :, input_pos] = v_val

        return k_out, v_out


class Attention(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        assert config.dim % config.n_head == 0
        self.dim = config.dim
        self.head_dim = config.dim // config.n_head
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
        total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim

        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        # regularization
        self.attn_dropout_p = config.attn_dropout_p
        self.resid_dropout = nn.Dropout(config.resid_dropout_p)

    def forward(
        self, x: torch.Tensor, freqs_cis: torch.Tensor = None, 
        input_pos: Optional[torch.Tensor] = None, 
        mask: Optional[torch.Tensor] = None
    ):
        bsz, seqlen, _ = x.shape
        kv_size = self.n_kv_head * self.head_dim
        xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
        
        xq = apply_rotary_emb(xq, freqs_cis)
        xk = apply_rotary_emb(xk, freqs_cis)

        xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))

        if self.kv_cache is not None:
            keys, values = self.kv_cache.update(input_pos, xk, xv)
        else:
            keys, values = xk, xv
        keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
        values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)

        output = F.scaled_dot_product_attention(
            xq, keys, values, 
            attn_mask=mask, 
            is_causal=True if mask is None else False, # is_causal=False is for KV cache
            dropout_p=self.attn_dropout_p if self.training else 0)            
        
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        output = self.resid_dropout(self.wo(output))
        return output


class TransformerBlock(nn.Module):
    def __init__(self, config: ModelArgs, drop_path: float):
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(
        self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
        h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask))
        out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
        return out


class Transformer(nn.Module):
    def __init__(self, config: ModelArgs):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
        self.n_layer = config.n_layer
        self.block_size = config.block_size
        self.num_classes = config.num_classes
        self.model_type = config.model_type
        self.cls_token_num = config.cls_token_num
        self.layer_internal = config.n_layer // 3
        # self.adapter = Adapter(output_dim=768)
        # self.adapter = ViT_Adapter()
        # self.adapter = DeiT_Adapter()
        self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type)
        # self.adapter = EVA_Adapter()
        if config.adapter_size == "small":
            self.adapter_mlp = MLP(384, config.dim, config.dim)
        elif config.adapter_size == 'base':
            self.adapter_mlp = MLP(768, config.dim, config.dim)

        if self.model_type == 'c2i':
            self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
        elif self.model_type == 't2i':
            self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
        else:
            raise Exception("please check model type")
        self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
        self.tok_dropout = nn.Dropout(config.token_dropout_p)

        self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim)
        self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size)
        self.condition_layers = torch.nn.ModuleList()
        for layer_id in range(3):
            self.condition_layers.append(MLP(config.dim,config.dim,config.dim))

        # transformer blocks
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
        self.layers = torch.nn.ModuleList()
        for layer_id in range(config.n_layer):
            self.layers.append(TransformerBlock(config, dpr[layer_id]))

        # output layer
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.output = nn.Linear(config.dim, config.vocab_size, bias=False)

        # 2d rotary pos embedding
        grid_size = int(self.block_size ** 0.5)
        assert grid_size * grid_size == self.block_size
        self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
        
        # KVCache
        self.max_batch_size = -1
        self.max_seq_length = -1

        self.initialize_weights()
        self.condition_token = None
        self.mask = get_causal_mask(256)
        self.global_token = None


    def initialize_weights(self):        
        # Initialize nn.Linear and nn.Embedding
        self.apply(self._init_weights)

        # Zero-out output layers:
        nn.init.constant_(self.output.weight, 0)

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)

        
    def setup_caches(self, max_batch_size, max_seq_length, dtype):
        # if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
        #     return
        head_dim = self.config.dim // self.config.n_head
        max_seq_length = find_multiple(max_seq_length, 8)  # 
        self.max_seq_length = max_seq_length
        self.max_batch_size = max_batch_size
        for b in self.layers:
            b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)

        causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
        self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
        grid_size = int(self.config.block_size ** 0.5)
        assert grid_size * grid_size == self.block_size
        self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)


    
    def forward(
        self, 
        idx: torch.Tensor, 
        cond_idx: torch.Tensor,  # cond_idx_or_embed
        input_pos:  Optional[torch.Tensor] = None, 
        targets: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
        valid: Optional[torch.Tensor] = None,
        condition: Optional[torch.Tensor] = None
    ):
        if idx is not None and cond_idx is not None: # training or naive inference
            cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training)
            cond_embeddings = cond_embeddings[:,:self.cls_token_num]
            token_embeddings = self.tok_embeddings(idx)
            if condition is not None:
                condition_embeddings = self.adapter(condition)
                condition_embeddings = self.adapter_mlp(condition_embeddings)
                self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids)
            token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)

            h = self.tok_dropout(token_embeddings)
            self.freqs_cis = self.freqs_cis.to(h.device)
        else:
            if cond_idx is not None: # prefill in inference
                token_embeddings = self.cls_embedding(cond_idx, train=self.training)
                token_embeddings = token_embeddings[:,:self.cls_token_num]
                if condition is not None:
                    condition_embeddings = self.condition_mlp(condition.to(torch.bfloat16),train=self.training)
                    self.condition_token = condition_embeddings
                    
            else: # decode_n_tokens(kv cache) in inference
                token_embeddings = self.tok_embeddings(idx)
            bs = token_embeddings.shape[0]
            mask = self.causal_mask[:bs, None, input_pos]
            h = self.tok_dropout(token_embeddings)
            self.freqs_cis = self.freqs_cis

        if self.training:
            freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
        else:
            freqs_cis = self.freqs_cis[input_pos]
        # transformer blocks
        for i, layer in enumerate(self.layers):
            if i%self.layer_internal == 0:
                if self.training:
                    h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token)
                else:
                    if len(input_pos)>1:
                        h[:, -1:] = h[:, -1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1])
                    else:
                        h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos-self.cls_token_num+1])
            h = layer(h, freqs_cis, input_pos, mask)
        # output layers
        h = self.norm(h)
        logits = self.output(h).float()
        
        if self.training:
            logits = logits[:, self.cls_token_num - 1:].contiguous()
        # if we are given some desired targets also calculate the loss
        loss = None
        if valid is not None:
            loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
            valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
            loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
        elif targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))


        return logits, loss


    def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
        return list(self.layers)



#################################################################################
#                      Rotary Positional Embedding Functions                    #
#################################################################################
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py 
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
    freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
    cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
    return cond_cache 


def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
    # split the dimension into half, one for x and one for y
    half_dim = n_elem // 2
    freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
    t = torch.arange(grid_size, device=freqs.device)
    freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
    freqs_grid = torch.concat([
        freqs[:, None, :].expand(-1, grid_size, -1),
        freqs[None, :, :].expand(grid_size, -1, -1),
    ], dim=-1)  # (grid_size, grid_size, head_dim // 2)
    cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
    cache = cache_grid.flatten(0, 1)
    cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
    return cond_cache 


def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
    # x: (bs, seq_len, n_head, head_dim)
    # freqs_cis (seq_len, head_dim // 2, 2)
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
    freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
    x_out2 = torch.stack([
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
    ], dim=-1)
    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)



#################################################################################
#                                GPT Configs                                    #
#################################################################################
### text-conditional
def GPT_7B(**kwargs):
    return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B

def GPT_3B(**kwargs):
    return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B

def GPT_1B(**kwargs):
    return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B

### class-conditional
def GPT_XXXL(**kwargs):
    return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B

def GPT_XXL(**kwargs):
    return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B

def GPT_XL(**kwargs):
    return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M

def GPT_L(**kwargs):
    return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M

def GPT_B(**kwargs):
    return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
        

GPT_models = {
    'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
    'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, 
}