Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,015 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Modified from:
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample.py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
from torchvision.utils import save_image
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from PIL import Image
import time
import argparse
from tokenizer.tokenizer_image.vq_model import VQ_models
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate
from functools import partial
import torch.nn.functional as F
import numpy as np
import cv2
def main(args):
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print(f"image tokenizer is loaded")
# create and load gpt model
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
latent_size = args.image_size // args.downsample_size
gpt_model = GPT_models[args.gpt_model](
vocab_size=args.codebook_size,
block_size=latent_size ** 2,
num_classes=args.num_classes,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
condition_token_num=args.condition_token_nums,
image_size=args.image_size
).to(device=device, dtype=precision)
_, file_extension = os.path.splitext(args.gpt_ckpt)
if file_extension.lower() == '.safetensors':
from safetensors.torch import load_file
model_weight = load_file(args.gpt_ckpt)
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
else:
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
if "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "module" in checkpoint: # deepspeed
model_weight = checkpoint["module"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight")
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
del checkpoint
print(f"gpt model is loaded")
if args.compile:
print(f"compiling the model...")
gpt_model = torch.compile(
gpt_model,
mode="reduce-overhead",
fullgraph=True
) # requires PyTorch 2.0 (optional)
else:
print(f"no need to compile model in demo")
condition_null = None
if args.condition_type == 'canny':
sample_list = [650, 2312, 15000, 48850] # canny
elif args.condition_type == 'depth':
sample_list = [101, 4351, 10601, 48901]
class_labels = [np.load(f"condition/example/c2i/{args.condition_type}/{i}.npy")[0] for i in sample_list]
condition_imgs = [np.array(Image.open((f"condition/example/c2i/{args.condition_type}/{i}.png")))[None,None,...] for i in sample_list]
condition_imgs = torch.from_numpy(np.concatenate(condition_imgs, axis=0)).to(device).to(torch.float32)/255
condition_imgs = 2*(condition_imgs-0.5)
print(condition_imgs.shape)
c_indices = torch.tensor(class_labels, device=device)
qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]
t1 = time.time()
index_sample = generate(
gpt_model, c_indices, latent_size ** 2, condition=condition_imgs.repeat(1,3,1,1).to(precision), condition_null=condition_null, condition_token_nums=args.condition_token_nums,
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
temperature=args.temperature, top_k=args.top_k,
top_p=args.top_p, sample_logits=True,
)
sampling_time = time.time() - t1
print(f"gpt sampling takes about {sampling_time:.2f} seconds.")
t2 = time.time()
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
# Save and display images:
condition_imgs = condition_imgs.repeat(1,3,1,1)
samples = torch.cat((condition_imgs[:4], samples[:4]),dim=0)
save_image(samples, f"sample/example/sample_{args.gpt_type}_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
parser.add_argument("--gpt-ckpt", type=str, default=None)
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
parser.add_argument("--from-fsdp", action='store_true')
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=256)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=4.0)
parser.add_argument("--cfg-interval", type=float, default=-1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
parser.add_argument("--condition-token-nums", type=int, default=0)
parser.add_argument("--condition-type", type=str, default='canny', choices=['canny', 'depth'])
args = parser.parse_args()
main(args) |