Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,012 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# Modified from:
# taming-transformers: https://github.com/CompVis/taming-transformers
# maskgit: https://github.com/google-research/maskgit
from dataclasses import dataclass, field
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
@dataclass
class ModelArgs:
codebook_size: int = 16384
codebook_embed_dim: int = 8
codebook_l2_norm: bool = True
codebook_show_usage: bool = True
commit_loss_beta: float = 0.25
entropy_loss_ratio: float = 0.0
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
z_channels: int = 256
dropout_p: float = 0.0
class VQModel(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.encoder = Encoder(ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
self.decoder = Decoder(ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
self.quantize = VectorQuantizer(config.codebook_size, config.codebook_embed_dim,
config.commit_loss_beta, config.entropy_loss_ratio,
config.codebook_l2_norm, config.codebook_show_usage)
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
self.post_quant_conv = nn.Conv2d(config.codebook_embed_dim, config.z_channels, 1)
def encode(self, x):
#import pdb; pdb.set_trace()
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b, shape=None, channel_first=True):
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
dec = self.decode(quant_b)
return dec
def forward(self, input):
quant, diff, _ = self.encode(input)
dec = self.decode(quant)
return dec, diff
class Encoder(nn.Module):
def __init__(self, in_channels=3, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2,
norm_type='group', dropout=0.0, resamp_with_conv=True, z_channels=256):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
# downsampling
in_ch_mult = (1,) + tuple(ch_mult)
self.conv_blocks = nn.ModuleList()
for i_level in range(self.num_resolutions):
conv_block = nn.Module()
# res & attn
res_block = nn.ModuleList()
attn_block = nn.ModuleList()
block_in = ch*in_ch_mult[i_level]
block_out = ch*ch_mult[i_level]
for _ in range(self.num_res_blocks):
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
block_in = block_out
if i_level == self.num_resolutions - 1:
attn_block.append(AttnBlock(block_in, norm_type))
conv_block.res = res_block
conv_block.attn = attn_block
# downsample
if i_level != self.num_resolutions-1:
conv_block.downsample = Downsample(block_in, resamp_with_conv)
self.conv_blocks.append(conv_block)
# middle
self.mid = nn.ModuleList()
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
# end
self.norm_out = Normalize(block_in, norm_type)
self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
h = self.conv_in(x)
# downsampling
for i_level, block in enumerate(self.conv_blocks):
for i_block in range(self.num_res_blocks):
h = block.res[i_block](h)
if len(block.attn) > 0:
h = block.attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = block.downsample(h)
# middle
for mid_block in self.mid:
h = mid_block(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(self, z_channels=256, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2, norm_type="group",
dropout=0.0, resamp_with_conv=True, out_channels=3):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
block_in = ch*ch_mult[self.num_resolutions-1]
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.ModuleList()
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
# upsampling
self.conv_blocks = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
conv_block = nn.Module()
# res & attn
res_block = nn.ModuleList()
attn_block = nn.ModuleList()
block_out = ch*ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
block_in = block_out
if i_level == self.num_resolutions - 1:
attn_block.append(AttnBlock(block_in, norm_type))
conv_block.res = res_block
conv_block.attn = attn_block
# downsample
if i_level != 0:
conv_block.upsample = Upsample(block_in, resamp_with_conv)
self.conv_blocks.append(conv_block)
# end
self.norm_out = Normalize(block_in, norm_type)
self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
@property
def last_layer(self):
return self.conv_out.weight
def forward(self, z):
# z to block_in
h = self.conv_in(z)
# middle
for mid_block in self.mid:
h = mid_block(h)
# upsampling
for i_level, block in enumerate(self.conv_blocks):
for i_block in range(self.num_res_blocks + 1):
h = block.res[i_block](h)
if len(block.attn) > 0:
h = block.attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = block.upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class VectorQuantizer(nn.Module):
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.entropy_loss_ratio = entropy_loss_ratio
self.l2_norm = l2_norm
self.show_usage = show_usage
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
if self.l2_norm:
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
if self.show_usage:
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = torch.einsum('b c h w -> b h w c', z).contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
if self.l2_norm:
z = F.normalize(z, p=2, dim=-1)
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
else:
embedding = self.embedding.weight
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(embedding**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = embedding[min_encoding_indices].view(z.shape)
perplexity = None
min_encodings = None
vq_loss = None
commit_loss = None
entropy_loss = None
codebook_usage = 0
if self.show_usage and self.training:
cur_len = min_encoding_indices.shape[0]
self.codebook_used[:-cur_len] = self.codebook_used[cur_len:].clone()
self.codebook_used[-cur_len:] = min_encoding_indices
codebook_usage = len(torch.unique(self.codebook_used)) / self.n_e
# compute loss for embedding
if self.training:
vq_loss = torch.mean((z_q - z.detach()) ** 2)
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = torch.einsum('b h w c -> b c h w', z_q)
return z_q, (vq_loss, commit_loss, entropy_loss, codebook_usage), (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices, shape=None, channel_first=True):
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
if self.l2_norm:
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
else:
embedding = self.embedding.weight
z_q = embedding[indices] # (b*h*w, c)
if shape is not None:
if channel_first:
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
else:
z_q = z_q.view(shape)
return z_q
class ResnetBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group'):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, norm_type)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = Normalize(out_channels, norm_type)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
else:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type='group'):
super().__init__()
self.norm = Normalize(in_channels, norm_type)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = q.reshape(b,c,h*w)
q = q.permute(0,2,1) # b,hw,c
k = k.reshape(b,c,h*w) # b,c,hw
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b,c,h*w)
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b,c,h,w)
h_ = self.proj_out(h_)
return x+h_
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
def Normalize(in_channels, norm_type='group'):
assert norm_type in ['group', 'batch']
if norm_type == 'group':
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
elif norm_type == 'batch':
return nn.SyncBatchNorm(in_channels)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
if self.with_conv:
pad = (0,1,0,1)
x = F.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = F.avg_pool2d(x, kernel_size=2, stride=2)
return x
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
flat_affinity /= temperature
probs = F.softmax(flat_affinity, dim=-1)
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
if loss_type == "softmax":
target_probs = probs
else:
raise ValueError("Entropy loss {} not supported".format(loss_type))
avg_probs = torch.mean(target_probs, dim=0)
avg_entropy = - torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
sample_entropy = - torch.mean(torch.sum(target_probs * log_probs, dim=-1))
loss = sample_entropy - avg_entropy
return loss
#################################################################################
# VQ Model Configs #
#################################################################################
def VQ_8(**kwargs):
return VQModel(ModelArgs(encoder_ch_mult=[1, 2, 2, 4], decoder_ch_mult=[1, 2, 2, 4], **kwargs))
def VQ_16(**kwargs):
return VQModel(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
VQ_models = {'VQ-16': VQ_16, 'VQ-8': VQ_8} |