File size: 8,788 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Modified from:
#   DiT:  https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.nn.functional as F
import torch.distributed as dist

from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse

from tokenizer.tokenizer_image.vq_model import VQ_models
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate


def create_npz_from_sample_folder(sample_dir, num=50_000):
    """
    Builds a single .npz file from a folder of .png samples.
    """
    samples = []
    for i in tqdm(range(num), desc="Building .npz file from samples"):
        sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
        sample_np = np.asarray(sample_pil).astype(np.uint8)
        samples.append(sample_np)
    samples = np.stack(samples)
    assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
    npz_path = f"{sample_dir}.npz"
    np.savez(npz_path, arr_0=samples)
    print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
    return npz_path


def main(args):
    # Setup PyTorch:
    assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
    torch.set_grad_enabled(False)

    # Setup DDP:
    dist.init_process_group("nccl")
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim)
    vq_model.to(device)
    vq_model.eval()
    checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
    vq_model.load_state_dict(checkpoint["model"])
    del checkpoint

    # create and load gpt model
    precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
    latent_size = args.image_size // args.downsample_size
    gpt_model = GPT_models[args.gpt_model](
        vocab_size=args.codebook_size,
        block_size=latent_size ** 2,
        num_classes=args.num_classes,
        cls_token_num=args.cls_token_num,
        model_type=args.gpt_type,
    ).to(device=device, dtype=precision)
    checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
    if args.from_fsdp: # fsdp
        model_weight = checkpoint
    elif "model" in checkpoint:  # ddp
        model_weight = checkpoint["model"]
    elif "module" in checkpoint: # deepspeed
        model_weight = checkpoint["module"]
    elif "state_dict" in checkpoint:
        model_weight = checkpoint["state_dict"]
    else:
        raise Exception("please check model weight, maybe add --from-fsdp to run command")
    # if 'freqs_cis' in model_weight:
    #     model_weight.pop('freqs_cis')
    gpt_model.load_state_dict(model_weight, strict=False)
    gpt_model.eval()
    del checkpoint

    if args.compile:
        print(f"compiling the model...")
        gpt_model = torch.compile(
            gpt_model,
            mode="reduce-overhead",
            fullgraph=True
        ) # requires PyTorch 2.0 (optional)
    else:
        print(f"no model compile") 

    # Create folder to save samples:
    model_string_name = args.gpt_model.replace("/", "-")
    if args.from_fsdp:
        ckpt_string_name = args.gpt_ckpt.split('/')[-2]
    else:
        ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
    folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-size-{args.image_size_eval}-{args.vq_model}-" \
                  f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
                  f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
    sample_folder_dir = f"{args.sample_dir}/{folder_name}"
    if rank == 0:
        os.makedirs(sample_folder_dir, exist_ok=True)
        print(f"Saving .png samples at {sample_folder_dir}")
    dist.barrier()

    # Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
    n = args.per_proc_batch_size
    global_batch_size = n * dist.get_world_size()
    # To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
    total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size)
    if rank == 0:
        print(f"Total number of images that will be sampled: {total_samples}")
    assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
    samples_needed_this_gpu = int(total_samples // dist.get_world_size())
    assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
    iterations = int(samples_needed_this_gpu // n)
    pbar = range(iterations)
    pbar = tqdm(pbar) if rank == 0 else pbar
    total = 0
    for _ in pbar:
        # Sample inputs:
        c_indices = torch.randint(0, args.num_classes, (n,), device=device)
        qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]

        index_sample = generate(
            gpt_model, c_indices, latent_size ** 2,
            cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
            temperature=args.temperature, top_k=args.top_k,
            top_p=args.top_p, sample_logits=True, 
            )
        
        samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
        if args.image_size_eval != args.image_size:
            samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
        samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
        
        # Save samples to disk as individual .png files
        for i, sample in enumerate(samples):
            index = i * dist.get_world_size() + rank + total
            Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
        total += global_batch_size

    # Make sure all processes have finished saving their samples before attempting to convert to .npz
    dist.barrier()
    if rank == 0:
        create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples)
        print("Done.")
    dist.barrier()
    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
    parser.add_argument("--gpt-ckpt", type=str, default=None)
    parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
    parser.add_argument("--from-fsdp", action='store_true')
    parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
    parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
    parser.add_argument("--compile", action='store_true', default=True)
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
    parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
    parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
    parser.add_argument("--num-classes", type=int, default=1000)
    parser.add_argument("--cfg-scale",  type=float, default=1.5)
    parser.add_argument("--cfg-interval", type=float, default=-1)
    parser.add_argument("--sample-dir", type=str, default="samples")
    parser.add_argument("--per-proc-batch-size", type=int, default=32)
    parser.add_argument("--num-fid-samples", type=int, default=5000)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--top-k", type=int, default=0,help="top-k value to sample with")
    parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
    parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
    args = parser.parse_args()
    main(args)