File size: 3,324 Bytes
2422035
f6bd4fa
2422035
 
 
 
 
f6bd4fa
4005999
6ca9756
4005999
 
 
 
 
 
 
 
 
6ca9756
4005999
6ca9756
3659749
 
 
 
 
 
 
b8cecf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422035
 
 
 
 
876dc56
2422035
 
 
 
 
 
 
 
99d538e
 
2422035
 
 
 
66ffc69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from model import Model
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
import os

# import subprocess

# def install_requirements():
#     try:
#         subprocess.run(['pip', 'install', 'torch==2.1.2+cu118', '--extra-index-url', 'https://download.pytorch.org/whl/cu118'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
#         result = subprocess.run(['pip', 'install', '-r', 'requirements.txt'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
#         print("安装成功!")
#         print("输出:", result.stdout.decode('utf-8'))
#     except subprocess.CalledProcessError as e:
#         print("安装失败!")
#         print("错误:", e.stderr.decode('utf-8'))

# install_requirements()

# hf_hub_download(repo_id='wondervictor/ControlAR',
#                 filename='canny_MR.safetensors',
#                 local_dir='./checkpoints/')
# hf_hub_download(repo_id='wondervictor/ControlAR',
#                 filename='depth_MR.safetensors',
#                 local_dir='./checkpoints/')
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
ckpt_folder = './checkpoints'
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl")
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder)

hf_hub_download(repo_id="lllyasviel/Annotators", filename="dpt_hybrid-midas-501f0c75.pt", local_dir=ckpt_folder)

hf_hub_download(repo_id="wondervictor/ControlAR", filename="canny_MR.safetensors", local_dir=ckpt_folder)
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_MR.safetensors", local_dir=ckpt_folder)


DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR.  \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
model = Model()
device = "cuda"
model.to(device)
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=SHOW_DUPLICATE_BUTTON,
    )
    with gr.Tabs():
        with gr.TabItem("Depth"):
            create_demo_depth(model.process_depth)
        with gr.TabItem("Canny"):
            create_demo_canny(model.process_canny)

if __name__ == "__main__":
    demo.launch(share=False)