Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,324 Bytes
2422035 f6bd4fa 2422035 f6bd4fa 4005999 6ca9756 4005999 6ca9756 4005999 6ca9756 3659749 b8cecf5 2422035 876dc56 2422035 99d538e 2422035 66ffc69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from model import Model
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
import os
# import subprocess
# def install_requirements():
# try:
# subprocess.run(['pip', 'install', 'torch==2.1.2+cu118', '--extra-index-url', 'https://download.pytorch.org/whl/cu118'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# result = subprocess.run(['pip', 'install', '-r', 'requirements.txt'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# print("安装成功!")
# print("输出:", result.stdout.decode('utf-8'))
# except subprocess.CalledProcessError as e:
# print("安装失败!")
# print("错误:", e.stderr.decode('utf-8'))
# install_requirements()
# hf_hub_download(repo_id='wondervictor/ControlAR',
# filename='canny_MR.safetensors',
# local_dir='./checkpoints/')
# hf_hub_download(repo_id='wondervictor/ControlAR',
# filename='depth_MR.safetensors',
# local_dir='./checkpoints/')
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
ckpt_folder = './checkpoints'
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl")
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder)
hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder)
hf_hub_download(repo_id="lllyasviel/Annotators", filename="dpt_hybrid-midas-501f0c75.pt", local_dir=ckpt_folder)
hf_hub_download(repo_id="wondervictor/ControlAR", filename="canny_MR.safetensors", local_dir=ckpt_folder)
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_MR.safetensors", local_dir=ckpt_folder)
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
model = Model()
device = "cuda"
model.to(device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=SHOW_DUPLICATE_BUTTON,
)
with gr.Tabs():
with gr.TabItem("Depth"):
create_demo_depth(model.process_depth)
with gr.TabItem("Canny"):
create_demo_canny(model.process_canny)
if __name__ == "__main__":
demo.launch(share=False)
|