Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,680 Bytes
a49d0a8 607c604 9ed9b88 a49d0a8 66ffc69 a49d0a8 876dc56 a49d0a8 b309037 876dc56 a49d0a8 876dc56 a49d0a8 b962858 a49d0a8 876dc56 a49d0a8 b962858 a49d0a8 113349b 627dbc0 6e50755 d8de5a4 a49d0a8 fc47e93 a49d0a8 8c75ec9 99d538e a49d0a8 876dc56 a49d0a8 fc47e93 a49d0a8 94283f9 a49d0a8 9ed9b88 b309037 ec7cc12 ca2b88e b309037 9ed9b88 a49d0a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gc
import spaces
from safetensors.torch import load_file
from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
import torch
import numpy as np
import PIL
from PIL import Image
from condition.canny import CannyDetector
import time
from autoregressive.models.generate import generate
from condition.midas.depth import MidasDetector
# from controlnet_aux import (
# MidasDetector,
# )
models = {
"canny": "checkpoints/canny_MR.safetensors",
"depth": "checkpoints/depth_MR.safetensors",
}
def resize_image_to_16_multiple(image, condition_type='canny'):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image = Image.open(image_path)
width, height = image.size
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32
new_width = (width + 31) // 32 * 32
new_height = (height + 31) // 32 * 32
else:
new_width = (width + 15) // 16 * 16
new_height = (height + 15) // 16 * 16
resized_image = image.resize((new_width, new_height))
return resized_image
class Model:
def __init__(self):
self.device = torch.device(
"cuda:0")
self.base_model_id = ""
self.task_name = ""
self.vq_model = self.load_vq()
self.t5_model = self.load_t5()
self.gpt_model_canny = self.load_gpt(condition_type='canny')
self.gpt_model_depth = self.load_gpt(condition_type='depth')
self.get_control_canny = CannyDetector()
self.get_control_depth = MidasDetector('cuda')
# self.get_control_depth = MidasDetector.from_pretrained("lllyasviel/Annotators")
def to(self, device):
self.gpt_model_canny.to('cuda')
print(next(self.gpt_model_canny.adapter.parameters()).device)
# print(self.gpt_model_canny.device)
def load_vq(self):
vq_model = VQ_models["VQ-16"](codebook_size=16384,
codebook_embed_dim=8)
vq_model.to('cuda')
vq_model.eval()
checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt",
map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print("image tokenizer is loaded")
return vq_model
def load_gpt(self, condition_type='canny'):
gpt_ckpt = models[condition_type]
precision = torch.bfloat16
latent_size = 768 // 16
gpt_model = GPT_models["GPT-XL"](
block_size=latent_size**2,
cls_token_num=120,
model_type='t2i',
condition_type=condition_type,
).to(device='cuda', dtype=precision)
model_weight = load_file(gpt_ckpt)
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
print("gpt model is loaded")
return gpt_model
def load_t5(self):
precision = torch.bfloat16
t5_model = T5Embedder(
device=self.device,
local_cache=True,
cache_dir='checkpoints/flan-t5-xl',
dir_or_name='flan-t5-xl',
torch_dtype=precision,
model_max_length=120,
)
return t5_model
@torch.no_grad()
@spaces.GPU(enable_queue=True)
def process_canny(
self,
image: np.ndarray,
prompt: str,
cfg_scale: float,
temperature: float,
top_k: int,
top_p: int,
seed: int,
low_threshold: int,
high_threshold: int,
) -> list[PIL.Image.Image]:
image = resize_image_to_16_multiple(image, 'canny')
W, H = image.size
print(W, H)
self.t5_model.model.to(self.device)
self.gpt_model_canny.to(self.device)
condition_img = self.get_control_canny(np.array(image), low_threshold,
high_threshold)
condition_img = torch.from_numpy(condition_img[None, None,
...]).repeat(
2, 3, 1, 1)
condition_img = condition_img.to(self.device)
condition_img = 2 * (condition_img / 255 - 0.5)
prompts = [prompt] * 2
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
print(f"processing left-padding...")
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb,
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
print(f' prompt {idx} token len: {valid_num}')
new_caption_emb = torch.cat(
[caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
c_indices = new_caption_embs * new_emb_masks[:, :, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), 8, H // 16, W // 16]
t1 = time.time()
print(caption_embs.device)
index_sample = generate(
self.gpt_model_canny,
c_indices,
(H // 16) * (W // 16),
c_emb_masks,
condition=condition_img,
cfg_scale=cfg_scale,
temperature=temperature,
top_k=top_k,
top_p=top_p,
sample_logits=True,
)
sampling_time = time.time() - t1
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
t2 = time.time()
print(index_sample.shape)
samples = self.vq_model.decode_code(
index_sample, qzshape) # output value is between [-1, 1]
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
samples = torch.cat((condition_img[0:1], samples), dim=0)
samples = 255 * (samples * 0.5 + 0.5)
samples = [image] + [
Image.fromarray(
sample.permute(1, 2, 0).cpu().detach().numpy().clip(
0, 255).astype(np.uint8)) for sample in samples
]
del condition_img
torch.cuda.empty_cache()
return samples
@torch.no_grad()
@spaces.GPU(enable_queue=True)
def process_depth(
self,
image: np.ndarray,
prompt: str,
cfg_scale: float,
temperature: float,
top_k: int,
top_p: int,
seed: int,
) -> list[PIL.Image.Image]:
image = resize_image_to_16_multiple(image, 'depth')
W, H = image.size
print(W, H)
self.t5_model.model.to(self.device)
self.gpt_model_depth.to(self.device)
self.get_control_depth.model.to(self.device)
self.vq_model.to(self.device)
image_tensor = torch.from_numpy(np.array(image)).to(self.device)
# condition_img = torch.from_numpy(
# self.get_control_depth(image_tensor)).unsqueeze(0)
# condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1)
# condition_img = condition_img.to(self.device)
# condition_img = 2 * (condition_img / 255 - 0.5)
condition_img = 2 * (image_tensor / 255 - 0.5)
print(condition_img.shape)
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2, 1, 1, 1)
# control_image = self.get_control_depth(
# image=image,
# image_resolution=512,
# detect_resolution=512,
# )
prompts = [prompt] * 2
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
print(f"processing left-padding...")
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb,
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
print(f' prompt {idx} token len: {valid_num}')
new_caption_emb = torch.cat(
[caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
c_indices = new_caption_embs * new_emb_masks[:, :, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), 8, H // 16, W // 16]
t1 = time.time()
index_sample = generate(
self.gpt_model_depth,
c_indices,
(H // 16) * (W // 16),
c_emb_masks,
condition=condition_img,
cfg_scale=cfg_scale,
temperature=temperature,
top_k=top_k,
top_p=top_p,
sample_logits=True,
)
sampling_time = time.time() - t1
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
t2 = time.time()
print(index_sample.shape)
samples = self.vq_model.decode_code(index_sample, qzshape)
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
condition_img = condition_img.cpu()
samples = samples.cpu()
samples = torch.cat((condition_img[0:1], samples), dim=0)
samples = 255 * (samples * 0.5 + 0.5)
samples = [image] + [
Image.fromarray(
sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8))
for sample in samples
]
del image_tensor
del condition_img
torch.cuda.empty_cache()
return samples
|