File size: 10,676 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)     # disable default parameter init for faster speed
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)  # disable default parameter init for faster speed
import torch.nn.functional as F
import torch.distributed as dist

import os
import math
import json
import argparse
import pandas as pd
from tqdm import tqdm
from PIL import Image

from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate
os.environ["TOKENIZERS_PARALLELISM"] = "false"



def main(args):
    # Setup PyTorch:
    assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
    torch.set_grad_enabled(False)

    # Setup DDP:
    dist.init_process_group("nccl")
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim)
    vq_model.to(device)
    vq_model.eval()
    checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
    vq_model.load_state_dict(checkpoint["model"])
    del checkpoint
    print(f"image tokenizer is loaded")

    # create and load gpt model
    precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
    latent_size = args.image_size // args.downsample_size
    gpt_model = GPT_models[args.gpt_model](
        block_size=latent_size ** 2,
        cls_token_num=args.cls_token_num,
        model_type=args.gpt_type,
    ).to(device=device, dtype=precision)

    checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
 
    if "model" in checkpoint:  # ddp
        model_weight = checkpoint["model"]
    elif "module" in checkpoint: # deepspeed
        model_weight = checkpoint["module"]
    elif "state_dict" in checkpoint:
        model_weight = checkpoint["state_dict"]
    else:
        raise Exception("please check model weight")
    gpt_model.load_state_dict(model_weight, strict=False)
    gpt_model.eval()
    del checkpoint
    print(f"gpt model is loaded")

    if args.compile:
        print(f"compiling the model...")
        gpt_model = torch.compile(
            gpt_model,
            mode="reduce-overhead",
            fullgraph=True
        ) # requires PyTorch 2.0 (optional)
    else:
        print(f"no need to compile model in demo") 
    
    assert os.path.exists(args.t5_path)
    t5_model = T5Embedder(
        device=device, 
        local_cache=True, 
        cache_dir=args.t5_path, 
        dir_or_name=args.t5_model_type,
        torch_dtype=precision,
        model_max_length=args.t5_feature_max_len,
    )
    print(f"t5 model is loaded")

    # Create folder to save samples:
    model_string_name = args.gpt_model.replace("/", "-")
    ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
    prompt_name = args.prompt_csv.split('/')[-1].split('.')[0].lower()
    folder_name = f"{model_string_name}-{ckpt_string_name}-{prompt_name}-size-{args.image_size}-size-{args.image_size}-{args.vq_model}-" \
                  f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
                  f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
    sample_folder_dir = f"{args.sample_dir}/{folder_name}"
    if rank == 0:
        os.makedirs(f"{sample_folder_dir}/images", exist_ok=True)
        print(f"Saving .png samples at {sample_folder_dir}/images")
    dist.barrier()

    df = pd.read_csv(args.prompt_csv, delimiter='\t')
    prompt_list = df['Prompt'].tolist()

    # Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
    n = args.per_proc_batch_size
    global_batch_size = n * dist.get_world_size()
    num_fid_samples = min(args.num_fid_samples, len(prompt_list))
    # To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
    total_samples = int(math.ceil(num_fid_samples / global_batch_size) * global_batch_size)
    if rank == 0:
        print(f"Total number of images that will be sampled: {total_samples}")
    assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
    samples_needed_this_gpu = int(total_samples // dist.get_world_size())
    assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
    iterations = int(samples_needed_this_gpu // n)
    pbar = range(iterations)
    pbar = tqdm(pbar) if rank == 0 else pbar
    total = 0
    for _ in pbar:
        # Select text prompt
        prompt_batch = []
        for i in range(n):
            index = i * dist.get_world_size() + rank + total
            prompt_batch.append(prompt_list[index] if index < len(prompt_list) else "a cute dog")
              
        # Sample inputs:
        caption_embs, emb_masks = t5_model.get_text_embeddings(prompt_batch)
        
        if not args.no_left_padding:
            new_emb_masks = torch.flip(emb_masks, dims=[-1])
            new_caption_embs = []
            for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
                valid_num = int(emb_mask.sum().item())
                # prompt_cur = prompt_batch[idx]
                # print(f'  prompt {idx} token len: {valid_num} : {prompt_cur}')
                new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]])
                new_caption_embs.append(new_caption_emb)
            new_caption_embs = torch.stack(new_caption_embs)

        else:
            new_caption_embs, new_emb_masks = caption_embs, emb_masks

        c_indices = new_caption_embs * new_emb_masks[:,:, None]
        c_emb_masks = new_emb_masks

        qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
        index_sample = generate(
            gpt_model, c_indices, latent_size ** 2, 
            c_emb_masks,
            cfg_scale=args.cfg_scale,
            temperature=args.temperature, top_k=args.top_k,
            top_p=args.top_p, sample_logits=True, 
            )
        
        samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
        samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
        
        # Save samples to disk as individual .png files
        for i, sample in enumerate(samples):
            index = i * dist.get_world_size() + rank + total
            Image.fromarray(sample).save(f"{sample_folder_dir}/images/{index:06d}.png")
        total += global_batch_size

    # Make sure all processes have finished saving their samples before attempting to convert to .npz
    dist.barrier()
    if rank == 0:
        # Save infer result in a jsonl file
        json_items = []
        for idx, prompt in enumerate(prompt_list):
            image_path = os.path.join(sample_folder_dir, "images", f"{idx:06d}.png")
            json_items.append({"text": prompt, "image_path": image_path})
        res_jsonl_path = os.path.join(sample_folder_dir, "result.jsonl")
        print(f"Save jsonl to {res_jsonl_path}...")
        with open(res_jsonl_path, "w") as f:
            for item in json_items:
                f.write(json.dumps(item) + "\n")

        # Save captions to txt
        caption_path = os.path.join(sample_folder_dir, "captions.txt")
        print(f"Save captions to {caption_path}...")
        with open(caption_path, "w") as f:
            for item in prompt_list:
                f.write(f"{item}\n")
        print("Done.")
    
    dist.barrier()
    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--prompt-csv", type=str, default='evaluations/t2i/PartiPrompts.tsv')
    parser.add_argument("--t5-path", type=str, default='pretrained_models/t5-ckpt')
    parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
    parser.add_argument("--t5-feature-max-len", type=int, default=120)
    parser.add_argument("--t5-feature-dim", type=int, default=2048)
    parser.add_argument("--no-left-padding", action='store_true', default=False)
    parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
    parser.add_argument("--gpt-ckpt", type=str, default=None)
    parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")  
    parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
    parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
    parser.add_argument("--compile", action='store_true', default=False)
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=512)
    parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
    parser.add_argument("--num-classes", type=int, default=1000)
    parser.add_argument("--cfg-scale", type=float, default=7.5)
    parser.add_argument("--sample-dir", type=str, default="samples_parti", help="samples_coco or samples_parti")
    parser.add_argument("--per-proc-batch-size", type=int, default=32)
    parser.add_argument("--num-fid-samples", type=int, default=30000)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--top-k", type=int, default=1000, help="top-k value to sample with")
    parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
    parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
    args = parser.parse_args()
    main(args)