Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,676 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
import torch.nn.functional as F
import torch.distributed as dist
import os
import math
import json
import argparse
import pandas as pd
from tqdm import tqdm
from PIL import Image
from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print(f"image tokenizer is loaded")
# create and load gpt model
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
latent_size = args.image_size // args.downsample_size
gpt_model = GPT_models[args.gpt_model](
block_size=latent_size ** 2,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
).to(device=device, dtype=precision)
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
if "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "module" in checkpoint: # deepspeed
model_weight = checkpoint["module"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight")
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
del checkpoint
print(f"gpt model is loaded")
if args.compile:
print(f"compiling the model...")
gpt_model = torch.compile(
gpt_model,
mode="reduce-overhead",
fullgraph=True
) # requires PyTorch 2.0 (optional)
else:
print(f"no need to compile model in demo")
assert os.path.exists(args.t5_path)
t5_model = T5Embedder(
device=device,
local_cache=True,
cache_dir=args.t5_path,
dir_or_name=args.t5_model_type,
torch_dtype=precision,
model_max_length=args.t5_feature_max_len,
)
print(f"t5 model is loaded")
# Create folder to save samples:
model_string_name = args.gpt_model.replace("/", "-")
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
prompt_name = args.prompt_csv.split('/')[-1].split('.')[0].lower()
folder_name = f"{model_string_name}-{ckpt_string_name}-{prompt_name}-size-{args.image_size}-size-{args.image_size}-{args.vq_model}-" \
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(f"{sample_folder_dir}/images", exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}/images")
dist.barrier()
df = pd.read_csv(args.prompt_csv, delimiter='\t')
prompt_list = df['Prompt'].tolist()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
num_fid_samples = min(args.num_fid_samples, len(prompt_list))
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(num_fid_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Select text prompt
prompt_batch = []
for i in range(n):
index = i * dist.get_world_size() + rank + total
prompt_batch.append(prompt_list[index] if index < len(prompt_list) else "a cute dog")
# Sample inputs:
caption_embs, emb_masks = t5_model.get_text_embeddings(prompt_batch)
if not args.no_left_padding:
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
# prompt_cur = prompt_batch[idx]
# print(f' prompt {idx} token len: {valid_num} : {prompt_cur}')
new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
else:
new_caption_embs, new_emb_masks = caption_embs, emb_masks
c_indices = new_caption_embs * new_emb_masks[:,:, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
index_sample = generate(
gpt_model, c_indices, latent_size ** 2,
c_emb_masks,
cfg_scale=args.cfg_scale,
temperature=args.temperature, top_k=args.top_k,
top_p=args.top_p, sample_logits=True,
)
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(f"{sample_folder_dir}/images/{index:06d}.png")
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
if rank == 0:
# Save infer result in a jsonl file
json_items = []
for idx, prompt in enumerate(prompt_list):
image_path = os.path.join(sample_folder_dir, "images", f"{idx:06d}.png")
json_items.append({"text": prompt, "image_path": image_path})
res_jsonl_path = os.path.join(sample_folder_dir, "result.jsonl")
print(f"Save jsonl to {res_jsonl_path}...")
with open(res_jsonl_path, "w") as f:
for item in json_items:
f.write(json.dumps(item) + "\n")
# Save captions to txt
caption_path = os.path.join(sample_folder_dir, "captions.txt")
print(f"Save captions to {caption_path}...")
with open(caption_path, "w") as f:
for item in prompt_list:
f.write(f"{item}\n")
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt-csv", type=str, default='evaluations/t2i/PartiPrompts.tsv')
parser.add_argument("--t5-path", type=str, default='pretrained_models/t5-ckpt')
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
parser.add_argument("--t5-feature-max-len", type=int, default=120)
parser.add_argument("--t5-feature-dim", type=int, default=2048)
parser.add_argument("--no-left-padding", action='store_true', default=False)
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
parser.add_argument("--gpt-ckpt", type=str, default=None)
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=512)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=7.5)
parser.add_argument("--sample-dir", type=str, default="samples_parti", help="samples_coco or samples_parti")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--num-fid-samples", type=int, default=30000)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=1000, help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
args = parser.parse_args()
main(args)
|