Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,083 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# Modified from:
# stylegan2-pytorch: https://github.com/lucidrains/stylegan2-pytorch/blob/master/stylegan2_pytorch/stylegan2_pytorch.py
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py
import math
import torch
import torch.nn as nn
try:
from kornia.filters import filter2d
except:
pass
class Discriminator(nn.Module):
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
log_size = int(math.log(image_size, 2))
in_channel = channels[image_size]
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
blocks.append(DiscriminatorBlock(in_channel, out_channel))
in_channel = out_channel
self.blocks = nn.ModuleList(blocks)
self.final_conv = nn.Sequential(
nn.Conv2d(in_channel, channels[4], 3, padding=1),
leaky_relu(),
)
self.final_linear = nn.Sequential(
nn.Linear(channels[4] * 4 * 4, channels[4]),
leaky_relu(),
nn.Linear(channels[4], 1)
)
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.final_conv(x)
x = x.view(x.shape[0], -1)
x = self.final_linear(x)
return x
class DiscriminatorBlock(nn.Module):
def __init__(self, input_channels, filters, downsample=True):
super().__init__()
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1))
self.net = nn.Sequential(
nn.Conv2d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv2d(filters, filters, 3, padding=1),
leaky_relu()
)
self.downsample = nn.Sequential(
Blur(),
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2)
) if downsample else None
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
x = self.downsample(x)
x = (x + res) * (1 / math.sqrt(2))
return x
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer('f', f)
def forward(self, x):
f = self.f
f = f[None, None, :] * f [None, :, None]
return filter2d(x, f, normalized=True)
def leaky_relu(p=0.2):
return nn.LeakyReLU(p, inplace=True)
def exists(val):
return val is not None
|