File size: 16,438 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Modified from:
#   fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
#   nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
import torch
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms

import os
import time
import argparse
from glob import glob
from copy import deepcopy
# import sys
# sys.path.append('/data/vjuicefs_sz_cv_v2/11171709/ControlAR')
from utils.logger import create_logger
from utils.distributed import init_distributed_mode
from utils.ema import update_ema, requires_grad
from dataset.augmentation import random_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
from tokenizer.tokenizer_image.vq_loss import VQLoss

import warnings
warnings.filterwarnings('ignore')

#################################################################################
#                                  Training Loop                                #
#################################################################################

def main(args):
    """
    Trains a new model.
    """
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    
    # Setup DDP:
    init_distributed_mode(args)
    assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)

    # Setup an experiment folder:
    if rank == 0:
        os.makedirs(args.results_dir, exist_ok=True)  # Make results folder (holds all experiment subfolders)
        experiment_index = len(glob(f"{args.results_dir}/*"))
        model_string_name = args.vq_model.replace("/", "-")
        experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"  # Create an experiment folder
        checkpoint_dir = f"{experiment_dir}/checkpoints"  # Stores saved model checkpoints
        os.makedirs(checkpoint_dir, exist_ok=True)
        logger = create_logger(experiment_dir)
        logger.info(f"Experiment directory created at {experiment_dir}")

        time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
        cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
        cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
        os.makedirs(cloud_checkpoint_dir, exist_ok=True)
        logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
    
    else:
        logger = create_logger(None)

    # training args
    logger.info(f"{args}")

    # training env
    logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim,
        commit_loss_beta=args.commit_loss_beta,
        entropy_loss_ratio=args.entropy_loss_ratio,
        dropout_p=args.dropout_p,
    )
    logger.info(f"VQ Model Parameters: {sum(p.numel() for p in vq_model.parameters()):,}")
    if args.ema:
        ema = deepcopy(vq_model).to(device)  # Create an EMA of the model for use after training
        requires_grad(ema, False)
        logger.info(f"VQ Model EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
    vq_model = vq_model.to(device)

    vq_loss = VQLoss(
        disc_start=args.disc_start, 
        disc_weight=args.disc_weight,
        disc_type=args.disc_type,
        disc_loss=args.disc_loss,
        gen_adv_loss=args.gen_loss,
        image_size=args.image_size,
        perceptual_weight=args.perceptual_weight,
        reconstruction_weight=args.reconstruction_weight,
        reconstruction_loss=args.reconstruction_loss,
        codebook_weight=args.codebook_weight,  
    ).to(device)
    logger.info(f"Discriminator Parameters: {sum(p.numel() for p in vq_loss.discriminator.parameters()):,}")

    # initialize a GradScaler. If enabled=False scaler is a no-op
    scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
    scaler_disc = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
    # Setup optimizer
    optimizer = torch.optim.Adam(vq_model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
    optimizer_disc = torch.optim.Adam(vq_loss.discriminator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))

    # Setup data:
    transform = transforms.Compose([
        transforms.Lambda(lambda pil_image: random_crop_arr(pil_image, args.image_size)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])
    if args.dataset == 'imagenet_code':
        dataset = build_dataset(args)
    else:
        dataset = build_dataset(args, transform=transform)
    sampler = DistributedSampler(
        dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=True,
        seed=args.global_seed
    )
    loader = DataLoader(
        dataset,
        batch_size=int(args.global_batch_size // dist.get_world_size()),
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=True
    )
    logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})")
    

    # Prepare models for training:
    if args.vq_ckpt:
        checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
        vq_model.load_state_dict(checkpoint["model"])
        if args.ema:
            ema.load_state_dict(checkpoint["ema"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        vq_loss.discriminator.load_state_dict(checkpoint["discriminator"])
        optimizer_disc.load_state_dict(checkpoint["optimizer_disc"])
        if not args.finetune:
            train_steps = checkpoint["steps"] if "steps" in checkpoint else int(args.vq_ckpt.split('/')[-1].split('.')[0])
            start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
            train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
        else:
            train_steps = 0
            start_epoch = 0           
        del checkpoint
        logger.info(f"Resume training from checkpoint: {args.vq_ckpt}")
        logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
    else:
        train_steps = 0
        start_epoch = 0
        if args.ema:
            update_ema(ema, vq_model, decay=0)  # Ensure EMA is initialized with synced weights
    
    if args.compile:
        logger.info("compiling the model... (may take several minutes)")
        vq_model = torch.compile(vq_model) # requires PyTorch 2.0        
    
    vq_model = DDP(vq_model.to(device), device_ids=[args.gpu])
    vq_model.train()
    if args.ema:
        ema.eval()  # EMA model should always be in eval mode
    vq_loss = DDP(vq_loss.to(device), device_ids=[args.gpu])
    vq_loss.train()

    ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]

    # Variables for monitoring/logging purposes:
    log_steps = 0
    running_loss = 0
    start_time = time.time()

    logger.info(f"Training for {args.epochs} epochs...")
    for epoch in range(start_epoch, args.epochs):
        sampler.set_epoch(epoch)
        logger.info(f"Beginning epoch {epoch}...")
        for x, y in loader:
            imgs = x.to(device, non_blocking=True)

            # generator training
            optimizer.zero_grad()
            with torch.cuda.amp.autocast(dtype=ptdtype):  
                recons_imgs, codebook_loss = vq_model(imgs)
                loss_gen = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=0, global_step=train_steps+1, 
                                   last_layer=vq_model.module.decoder.last_layer, 
                                   logger=logger, log_every=args.log_every)
            scaler.scale(loss_gen).backward()
            if args.max_grad_norm != 0.0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(vq_model.parameters(), args.max_grad_norm)
            scaler.step(optimizer)
            scaler.update()
            if args.ema:
                update_ema(ema, vq_model.module._orig_mod if args.compile else vq_model.module)

            # discriminator training            
            optimizer_disc.zero_grad()
            with torch.cuda.amp.autocast(dtype=ptdtype):
                loss_disc = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=1, global_step=train_steps+1,
                                    logger=logger, log_every=args.log_every)
            scaler_disc.scale(loss_disc).backward()
            if args.max_grad_norm != 0.0:
                scaler_disc.unscale_(optimizer_disc)
                torch.nn.utils.clip_grad_norm_(vq_loss.module.discriminator.parameters(), args.max_grad_norm)
            scaler_disc.step(optimizer_disc)
            scaler_disc.update()
            
            # # Log loss values:
            running_loss += loss_gen.item() + loss_disc.item()
            
            log_steps += 1
            train_steps += 1
            if train_steps % args.log_every == 0:
                # Measure training speed:
                torch.cuda.synchronize()
                end_time = time.time()
                steps_per_sec = log_steps / (end_time - start_time)
                # Reduce loss history over all processes:
                avg_loss = torch.tensor(running_loss / log_steps, device=device)
                dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
                avg_loss = avg_loss.item() / dist.get_world_size()
                logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
                # Reset monitoring variables:
                running_loss = 0
                log_steps = 0
                start_time = time.time()

            # Save checkpoint:
            if train_steps % args.ckpt_every == 0 and train_steps > 0:
                if rank == 0:
                    if args.compile:
                        model_weight = vq_model.module._orig_mod.state_dict()
                    else:
                        model_weight = vq_model.module.state_dict()  
                    checkpoint = {
                        "model": model_weight,
                        "optimizer": optimizer.state_dict(),
                        "discriminator": vq_loss.module.discriminator.state_dict(),
                        "optimizer_disc": optimizer_disc.state_dict(),
                        "steps": train_steps,
                        "args": args
                    }
                    if args.ema:
                        checkpoint["ema"] = ema.state_dict()
                    if not args.no_local_save:
                        checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
                        torch.save(checkpoint, checkpoint_path)
                        logger.info(f"Saved checkpoint to {checkpoint_path}")
                    
                    cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
                    torch.save(checkpoint, cloud_checkpoint_path)
                    logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
                dist.barrier()

    vq_model.eval()  # important! This disables randomized embedding dropout
    # do any sampling/FID calculation/etc. with ema (or model) in eval mode ...

    logger.info("Done!")
    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default=None)
    parser.add_argument("--code-path", type=str, default=None)
    parser.add_argument("--data-face-path", type=str, default=None, help="face datasets to improve vq model")
    parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
    parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training")
    parser.add_argument("--finetune", action='store_true', help="finetune a pre-trained vq model")
    parser.add_argument("--ema", action='store_true', help="whether using ema training")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--codebook-l2-norm", action='store_true', default=True, help="l2 norm codebook")
    parser.add_argument("--codebook-weight", type=float, default=1.0, help="codebook loss weight for vector quantization")
    parser.add_argument("--entropy-loss-ratio", type=float, default=0.0, help="entropy loss ratio in codebook loss")
    parser.add_argument("--commit-loss-beta", type=float, default=0.25, help="commit loss beta in codebook loss")
    parser.add_argument("--reconstruction-weight", type=float, default=1.0, help="reconstruction loss weight of image pixel")
    parser.add_argument("--reconstruction-loss", type=str, default='l2', help="reconstruction loss type of image pixel")
    parser.add_argument("--perceptual-weight", type=float, default=1.0, help="perceptual loss weight of LPIPS")
    parser.add_argument("--disc-weight", type=float, default=0.5, help="discriminator loss weight for gan training")
    parser.add_argument("--disc-start", type=int, default=20000, help="iteration to start discriminator training and loss")
    parser.add_argument("--disc-type", type=str, choices=['patchgan', 'stylegan'], default='patchgan', help="discriminator type")
    parser.add_argument("--disc-loss", type=str, choices=['hinge', 'vanilla', 'non-saturating'], default='hinge', help="discriminator loss")
    parser.add_argument("--gen-loss", type=str, choices=['hinge', 'non-saturating'], default='hinge', help="generator loss for gan training")
    parser.add_argument("--compile", action='store_true', default=False)
    parser.add_argument("--dropout-p", type=float, default=0.0, help="dropout_p")
    parser.add_argument("--results-dir", type=str, default="results_tokenizer_image")
    parser.add_argument("--dataset", type=str, default='imagenet')
    parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
    parser.add_argument("--epochs", type=int, default=40)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
    parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--global-batch-size", type=int, default=64)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=16)
    parser.add_argument("--log-every", type=int, default=100)
    parser.add_argument("--ckpt-every", type=int, default=5000)
    parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
    parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
    parser.add_argument("--condition", type=str, default='hed')
    parser.add_argument("--get-condition-img", type=bool, default=False)
    args = parser.parse_args()
    main(args)