Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,438 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Modified from:
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
import torch
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms
import os
import time
import argparse
from glob import glob
from copy import deepcopy
# import sys
# sys.path.append('/data/vjuicefs_sz_cv_v2/11171709/ControlAR')
from utils.logger import create_logger
from utils.distributed import init_distributed_mode
from utils.ema import update_ema, requires_grad
from dataset.augmentation import random_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
from tokenizer.tokenizer_image.vq_loss import VQLoss
import warnings
warnings.filterwarnings('ignore')
#################################################################################
# Training Loop #
#################################################################################
def main(args):
"""
Trains a new model.
"""
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
init_distributed_mode(args)
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.vq_model.replace("/", "-")
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
else:
logger = create_logger(None)
# training args
logger.info(f"{args}")
# training env
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim,
commit_loss_beta=args.commit_loss_beta,
entropy_loss_ratio=args.entropy_loss_ratio,
dropout_p=args.dropout_p,
)
logger.info(f"VQ Model Parameters: {sum(p.numel() for p in vq_model.parameters()):,}")
if args.ema:
ema = deepcopy(vq_model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
logger.info(f"VQ Model EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
vq_model = vq_model.to(device)
vq_loss = VQLoss(
disc_start=args.disc_start,
disc_weight=args.disc_weight,
disc_type=args.disc_type,
disc_loss=args.disc_loss,
gen_adv_loss=args.gen_loss,
image_size=args.image_size,
perceptual_weight=args.perceptual_weight,
reconstruction_weight=args.reconstruction_weight,
reconstruction_loss=args.reconstruction_loss,
codebook_weight=args.codebook_weight,
).to(device)
logger.info(f"Discriminator Parameters: {sum(p.numel() for p in vq_loss.discriminator.parameters()):,}")
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
scaler_disc = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
# Setup optimizer
optimizer = torch.optim.Adam(vq_model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
optimizer_disc = torch.optim.Adam(vq_loss.discriminator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
# Setup data:
transform = transforms.Compose([
transforms.Lambda(lambda pil_image: random_crop_arr(pil_image, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
if args.dataset == 'imagenet_code':
dataset = build_dataset(args)
else:
dataset = build_dataset(args, transform=transform)
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=int(args.global_batch_size // dist.get_world_size()),
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})")
# Prepare models for training:
if args.vq_ckpt:
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
if args.ema:
ema.load_state_dict(checkpoint["ema"])
optimizer.load_state_dict(checkpoint["optimizer"])
vq_loss.discriminator.load_state_dict(checkpoint["discriminator"])
optimizer_disc.load_state_dict(checkpoint["optimizer_disc"])
if not args.finetune:
train_steps = checkpoint["steps"] if "steps" in checkpoint else int(args.vq_ckpt.split('/')[-1].split('.')[0])
start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
else:
train_steps = 0
start_epoch = 0
del checkpoint
logger.info(f"Resume training from checkpoint: {args.vq_ckpt}")
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
else:
train_steps = 0
start_epoch = 0
if args.ema:
update_ema(ema, vq_model, decay=0) # Ensure EMA is initialized with synced weights
if args.compile:
logger.info("compiling the model... (may take several minutes)")
vq_model = torch.compile(vq_model) # requires PyTorch 2.0
vq_model = DDP(vq_model.to(device), device_ids=[args.gpu])
vq_model.train()
if args.ema:
ema.eval() # EMA model should always be in eval mode
vq_loss = DDP(vq_loss.to(device), device_ids=[args.gpu])
vq_loss.train()
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
# Variables for monitoring/logging purposes:
log_steps = 0
running_loss = 0
start_time = time.time()
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
for x, y in loader:
imgs = x.to(device, non_blocking=True)
# generator training
optimizer.zero_grad()
with torch.cuda.amp.autocast(dtype=ptdtype):
recons_imgs, codebook_loss = vq_model(imgs)
loss_gen = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=0, global_step=train_steps+1,
last_layer=vq_model.module.decoder.last_layer,
logger=logger, log_every=args.log_every)
scaler.scale(loss_gen).backward()
if args.max_grad_norm != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(vq_model.parameters(), args.max_grad_norm)
scaler.step(optimizer)
scaler.update()
if args.ema:
update_ema(ema, vq_model.module._orig_mod if args.compile else vq_model.module)
# discriminator training
optimizer_disc.zero_grad()
with torch.cuda.amp.autocast(dtype=ptdtype):
loss_disc = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=1, global_step=train_steps+1,
logger=logger, log_every=args.log_every)
scaler_disc.scale(loss_disc).backward()
if args.max_grad_norm != 0.0:
scaler_disc.unscale_(optimizer_disc)
torch.nn.utils.clip_grad_norm_(vq_loss.module.discriminator.parameters(), args.max_grad_norm)
scaler_disc.step(optimizer_disc)
scaler_disc.update()
# # Log loss values:
running_loss += loss_gen.item() + loss_disc.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time.time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time.time()
# Save checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
if args.compile:
model_weight = vq_model.module._orig_mod.state_dict()
else:
model_weight = vq_model.module.state_dict()
checkpoint = {
"model": model_weight,
"optimizer": optimizer.state_dict(),
"discriminator": vq_loss.module.discriminator.state_dict(),
"optimizer_disc": optimizer_disc.state_dict(),
"steps": train_steps,
"args": args
}
if args.ema:
checkpoint["ema"] = ema.state_dict()
if not args.no_local_save:
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, cloud_checkpoint_path)
logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
dist.barrier()
vq_model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default=None)
parser.add_argument("--code-path", type=str, default=None)
parser.add_argument("--data-face-path", type=str, default=None, help="face datasets to improve vq model")
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training")
parser.add_argument("--finetune", action='store_true', help="finetune a pre-trained vq model")
parser.add_argument("--ema", action='store_true', help="whether using ema training")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--codebook-l2-norm", action='store_true', default=True, help="l2 norm codebook")
parser.add_argument("--codebook-weight", type=float, default=1.0, help="codebook loss weight for vector quantization")
parser.add_argument("--entropy-loss-ratio", type=float, default=0.0, help="entropy loss ratio in codebook loss")
parser.add_argument("--commit-loss-beta", type=float, default=0.25, help="commit loss beta in codebook loss")
parser.add_argument("--reconstruction-weight", type=float, default=1.0, help="reconstruction loss weight of image pixel")
parser.add_argument("--reconstruction-loss", type=str, default='l2', help="reconstruction loss type of image pixel")
parser.add_argument("--perceptual-weight", type=float, default=1.0, help="perceptual loss weight of LPIPS")
parser.add_argument("--disc-weight", type=float, default=0.5, help="discriminator loss weight for gan training")
parser.add_argument("--disc-start", type=int, default=20000, help="iteration to start discriminator training and loss")
parser.add_argument("--disc-type", type=str, choices=['patchgan', 'stylegan'], default='patchgan', help="discriminator type")
parser.add_argument("--disc-loss", type=str, choices=['hinge', 'vanilla', 'non-saturating'], default='hinge', help="discriminator loss")
parser.add_argument("--gen-loss", type=str, choices=['hinge', 'non-saturating'], default='hinge', help="generator loss for gan training")
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--dropout-p", type=float, default=0.0, help="dropout_p")
parser.add_argument("--results-dir", type=str, default="results_tokenizer_image")
parser.add_argument("--dataset", type=str, default='imagenet')
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--epochs", type=int, default=40)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--global-batch-size", type=int, default=64)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=16)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument("--ckpt-every", type=int, default=5000)
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--condition", type=str, default='hed')
parser.add_argument("--get-condition-img", type=bool, default=False)
args = parser.parse_args()
main(args)
|