Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import random | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, 100000000) | |
return seed | |
examples = [ | |
[ | |
"condition/example/t2i/bird.jpg", | |
"A bird made of blue crystal" | |
], | |
[ | |
"condition/example/t2i/sofa.png", | |
"The red sofa in the living room has several pillows on it" | |
], | |
[ | |
"condition/example/t2i/house.jpg", | |
"A brick house with a chimney under a starry sky.", | |
] | |
] | |
def create_demo(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image() | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
preprocessor_name = gr.Radio( | |
label="Preprocessor", | |
choices=[ | |
"depth", | |
"No preprocess", | |
], | |
type="value", | |
value="depth", | |
info='depth.', | |
) | |
cfg_scale = gr.Slider(label="Guidance scale", | |
minimum=0.1, | |
maximum=30.0, | |
value=2, | |
step=0.1) | |
control_strength = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=0.6, label="control_strength") | |
# resolution = gr.Slider(label="(H, W)", | |
# minimum=384, | |
# maximum=768, | |
# value=512, | |
# step=16) | |
top_k = gr.Slider(minimum=1, | |
maximum=16384, | |
step=1, | |
value=2000, | |
label='Top-K') | |
top_p = gr.Slider(minimum=0., | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="Top-P") | |
temperature = gr.Slider(minimum=0., | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label='Temperature') | |
seed = gr.Slider(label="Seed", | |
minimum=0, | |
maximum=100000000, | |
step=1, | |
value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", | |
value=True) | |
with gr.Column(): | |
result = gr.Gallery(label="Output", | |
show_label=False, | |
height='800px', | |
columns=2, | |
object_fit="scale-down") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
image, | |
prompt, | |
# resolution, | |
] | |
) | |
inputs = [ | |
image, | |
prompt, | |
cfg_scale, | |
temperature, | |
top_k, | |
top_p, | |
seed, | |
control_strength, | |
preprocessor_name | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=process, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=process, | |
inputs=inputs, | |
outputs=result, | |
api_name="depth", | |
) | |
return demo | |
if __name__ == "__main__": | |
from model import Model | |
model = Model() | |
demo = create_demo(model.process_depth) | |
demo.queue().launch(share=False, server_name="0.0.0.0") | |